TY - GEN
T1 - Chemically-induced structural deformation of layered perovskite oxides
AU - Nakamura, Takashi
AU - Amezawa, Koji
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/11/21
Y1 - 2016/11/21
N2 - In order to understand the behavior of the crystal lattice deformation induced by the interstitial oxygen formation in La2(Ni0.9M0.1)O4+δ (M = Fe, Co, Cu), thermogravimetry, coulometric titration, and high temperature X-ray diffraction measurements were carried out in the temperature range between 873 to 1173 K and the P(O2) range between 10-24 to 1 bar. Oxygen content variation under wide range of P(O2) could be successfully evaluated by combining thermogravimetry and coulometric titration techniques. Compared with non-doped La2NiO4+δ, La2(Ni0.9Fe0.1)O4+δ and La2(Ni0.9Co0.1)O4+δ have more interstitial oxygen while La2(Ni0.9Cu0.1)O4+δ have less. Crystal structure at high temperatures was analyzed assuming the tetragonal symmetry, I4/mmm, for all compositions. With increasing interstitial oxygen concentration, the lattice parameter perpendicular to the perovskite layer increased and that parallel to the perovskite layer decreased. Consequently, the change of the cell volume by the interstitial oxygen formation was small, meaning macroscopic chemical expansion is small.
AB - In order to understand the behavior of the crystal lattice deformation induced by the interstitial oxygen formation in La2(Ni0.9M0.1)O4+δ (M = Fe, Co, Cu), thermogravimetry, coulometric titration, and high temperature X-ray diffraction measurements were carried out in the temperature range between 873 to 1173 K and the P(O2) range between 10-24 to 1 bar. Oxygen content variation under wide range of P(O2) could be successfully evaluated by combining thermogravimetry and coulometric titration techniques. Compared with non-doped La2NiO4+δ, La2(Ni0.9Fe0.1)O4+δ and La2(Ni0.9Co0.1)O4+δ have more interstitial oxygen while La2(Ni0.9Cu0.1)O4+δ have less. Crystal structure at high temperatures was analyzed assuming the tetragonal symmetry, I4/mmm, for all compositions. With increasing interstitial oxygen concentration, the lattice parameter perpendicular to the perovskite layer increased and that parallel to the perovskite layer decreased. Consequently, the change of the cell volume by the interstitial oxygen formation was small, meaning macroscopic chemical expansion is small.
UR - http://www.scopus.com/inward/record.url?scp=85006839754&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85006839754&partnerID=8YFLogxK
U2 - 10.1109/NANO.2016.7751481
DO - 10.1109/NANO.2016.7751481
M3 - Conference contribution
AN - SCOPUS:85006839754
T3 - 16th International Conference on Nanotechnology - IEEE NANO 2016
SP - 429
EP - 430
BT - 16th International Conference on Nanotechnology - IEEE NANO 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 16th IEEE International Conference on Nanotechnology - IEEE NANO 2016
Y2 - 22 August 2016 through 25 August 2016
ER -