TY - GEN
T1 - Classification of blood flow in cerebral aneurysm considering the parent artery curves
AU - Nakayama, Toshio
AU - Sugiyama, Shin Ichiro
AU - Ohta, Makoto
PY - 2013
Y1 - 2013
N2 - Background and purpose: Recently, the number of endovascular treatments has increased worldwide because of advances in minimally invasive surgery. We considered the effect of reduced flow due to stent implantation and proposed the design of stent strut pattern from the viewpoint of fluid dynamics. We developed an optimized stent strut pattern using a computational fluid dynamics (CFD) system. A classification of cerebral aneurysms was proposed using the aspect ratio (AR) and the stent strut pattern was optimized. The results of optimal stent strut pattern for reduced blood flow speed and wall shear stress were different, and the influence of the AR values was small because there was no dependence on relationship between blood flow and the AR values due to the use of a straight pipe in the parent artery. The classification of blood flow pattern in a cerebral aneurysm must consider the parent artery curves. In this study, we investigated the relationship between the blood flow pattern in cerebral aneurysms and parent artery curves using CFD. Methods: To investigate the influence of blood flow based on the parent artery curve, the parent artery shape was constructed as follows. Patient-specific parent artery shape with a cerebral aneurysm was reconstructed using OsiriX. Center line was extracted using a vascular modeling tool kit. The parent artery shape was reconstructed based on this center line using CAD. The diameter of the parent artery was 4 mm. The cerebral aneurysm shape was a combination of a straight pipe and a half sphere, and the AR value was fixed at 1.0. The cerebral aneurysm position varied from the original position to a 180° rotated position. Tetrahedral numerical mesh was generated with a commercial mesh generator (ICEM CFD 14.0; Ansys Inc.) for the CFD analysis. The numerical blood flow simulation was performed on a supercomputer using the commercial ANSYS FLUENT 6.3 software package and the finite volume method, and a steady flow simulation was performed. Boundary conditions were set for velocity at the inlet, pressure at the outlet, no-slip parent artery, and stent surface. Reynolds numbers at the inlet determined from the mean blood flow speed were 240 and 600. Results and discussion: In this study, we revealed the blood flow pattern in some cerebral aneurysms using CFD. The pattern in a cerebral aneurysm was influenced by the aneurysm direction and parent artery curves. The blood flow pattern in a neck cerebral aneurysm was classified into two types.
AB - Background and purpose: Recently, the number of endovascular treatments has increased worldwide because of advances in minimally invasive surgery. We considered the effect of reduced flow due to stent implantation and proposed the design of stent strut pattern from the viewpoint of fluid dynamics. We developed an optimized stent strut pattern using a computational fluid dynamics (CFD) system. A classification of cerebral aneurysms was proposed using the aspect ratio (AR) and the stent strut pattern was optimized. The results of optimal stent strut pattern for reduced blood flow speed and wall shear stress were different, and the influence of the AR values was small because there was no dependence on relationship between blood flow and the AR values due to the use of a straight pipe in the parent artery. The classification of blood flow pattern in a cerebral aneurysm must consider the parent artery curves. In this study, we investigated the relationship between the blood flow pattern in cerebral aneurysms and parent artery curves using CFD. Methods: To investigate the influence of blood flow based on the parent artery curve, the parent artery shape was constructed as follows. Patient-specific parent artery shape with a cerebral aneurysm was reconstructed using OsiriX. Center line was extracted using a vascular modeling tool kit. The parent artery shape was reconstructed based on this center line using CAD. The diameter of the parent artery was 4 mm. The cerebral aneurysm shape was a combination of a straight pipe and a half sphere, and the AR value was fixed at 1.0. The cerebral aneurysm position varied from the original position to a 180° rotated position. Tetrahedral numerical mesh was generated with a commercial mesh generator (ICEM CFD 14.0; Ansys Inc.) for the CFD analysis. The numerical blood flow simulation was performed on a supercomputer using the commercial ANSYS FLUENT 6.3 software package and the finite volume method, and a steady flow simulation was performed. Boundary conditions were set for velocity at the inlet, pressure at the outlet, no-slip parent artery, and stent surface. Reynolds numbers at the inlet determined from the mean blood flow speed were 240 and 600. Results and discussion: In this study, we revealed the blood flow pattern in some cerebral aneurysms using CFD. The pattern in a cerebral aneurysm was influenced by the aneurysm direction and parent artery curves. The blood flow pattern in a neck cerebral aneurysm was classified into two types.
UR - http://www.scopus.com/inward/record.url?scp=84903479983&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903479983&partnerID=8YFLogxK
U2 - 10.1115/IMECE2013-63922
DO - 10.1115/IMECE2013-63922
M3 - Conference contribution
AN - SCOPUS:84903479983
SN - 9780791856215
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Biomedical and Biotechnology Engineering
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
Y2 - 15 November 2013 through 21 November 2013
ER -