TY - JOUR
T1 - Coexistence of a self-induced-transparency soliton and a nonlinear Schrödinger soliton in an erbium-doped fiber
AU - Nakazawa, Masataka
AU - Yamada, Eiichi
AU - Kubota, Hirokazu
PY - 1991
Y1 - 1991
N2 - The possibility of observing a self-induced transparency (SIT) in an erbium-doped optical fiber is investigated. A general equation that includes the SIT, the group-velocity dispersion (GVD) of the fiber, and the nonlinear refractive index is discussed. It is shown that for one particular value of waveguide parameters the nonlinear index can balance the GVD, that is, the nonlinear Schrödinger equation (NLS), while maintaining a SIT soliton. This is called a SIT-NLS soliton. The phase change of the SIT-NLS soliton is governed solely by the NLS component, and the pulse delay due to resonance is determined solely by the SIT component when the detuning is zero. Practical parameters for silica-based fibers do not allow the coexistence of a mixed soliton state. A simple derivation of a condition for a SIT-NLS soliton is also presented. The SIT-NLS soliton is computer-run, and it is shown that a stable 2/N=1 SIT-NLS soliton exists. However, high-order SIT-NLS solitons always split into multiple 2/N=1 solitons. The NLS property can be preserved when Zsp Labs. Finally, the NLS soliton that interacts coherently with erbium ions is studied, and the coherent pulsation that produces multiple narrow pulses is described.
AB - The possibility of observing a self-induced transparency (SIT) in an erbium-doped optical fiber is investigated. A general equation that includes the SIT, the group-velocity dispersion (GVD) of the fiber, and the nonlinear refractive index is discussed. It is shown that for one particular value of waveguide parameters the nonlinear index can balance the GVD, that is, the nonlinear Schrödinger equation (NLS), while maintaining a SIT soliton. This is called a SIT-NLS soliton. The phase change of the SIT-NLS soliton is governed solely by the NLS component, and the pulse delay due to resonance is determined solely by the SIT component when the detuning is zero. Practical parameters for silica-based fibers do not allow the coexistence of a mixed soliton state. A simple derivation of a condition for a SIT-NLS soliton is also presented. The SIT-NLS soliton is computer-run, and it is shown that a stable 2/N=1 SIT-NLS soliton exists. However, high-order SIT-NLS solitons always split into multiple 2/N=1 solitons. The NLS property can be preserved when Zsp Labs. Finally, the NLS soliton that interacts coherently with erbium ions is studied, and the coherent pulsation that produces multiple narrow pulses is described.
UR - http://www.scopus.com/inward/record.url?scp=11744322155&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=11744322155&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.44.5973
DO - 10.1103/PhysRevA.44.5973
M3 - Article
AN - SCOPUS:11744322155
SN - 1050-2947
VL - 44
SP - 5973
EP - 5987
JO - Physical Review A
JF - Physical Review A
IS - 9
ER -