Combined numerical and experimental study of microstructure and permeability in porous granular media

Philipp Eichheimer, Marcel Thielmann, Wakana Fujita, Gregor J. Golabek, Michihiko Nakamura, Satoshi Okumura, Takayuki Nakatani, Maximilian O. Kottwitz

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Fluid flow on different scales is of interest for several Earth science disciplines like petrophysics, hydrogeology and volcanology. To parameterize fluid flow in large-scale numerical simulations (e.g. groundwater and volcanic systems), flow properties on the microscale need to be considered. For this purpose experimental and numerical investigations of flow through porous media over a wide range of porosities are necessary. In the present study we sinter glass bead media with various porosities and measure the permeability experimentally. The microstructure, namely effective porosity and effective specific surface, is investigated using image processing. We determine flow properties like tortuosity and permeability using numerical simulations. We test different parameterizations for isotropic low-porosity media on their potential to predict permeability by comparing their estimations to computed and experimentally measured values.

Original languageEnglish
Pages (from-to)1079-1095
Number of pages17
JournalSolid Earth
Volume11
Issue number3
DOIs
Publication statusPublished - 2020 Jun 25

ASJC Scopus subject areas

  • Soil Science
  • Geophysics
  • Geology
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Stratigraphy
  • Palaeontology

Fingerprint

Dive into the research topics of 'Combined numerical and experimental study of microstructure and permeability in porous granular media'. Together they form a unique fingerprint.

Cite this