TY - JOUR
T1 - Comparison of DVH-based plan verification methods for VMAT
T2 - ArcCHECK-3DVH system and dynalog-based dose reconstruction
AU - Saito, Masahide
AU - Kadoya, Noriyuki
AU - Sato, Kiyokazu
AU - Ito, Kengo
AU - Dobashi, Suguru
AU - Takeda, Ken
AU - Onishi, Hiroshi
AU - Jingu, Keiichi
N1 - Publisher Copyright:
© 2017 The Authors.
PY - 2017/7/1
Y1 - 2017/7/1
N2 - The purpose of this study was comparing dose-volume histogram (DVH)-based plan verification methods for volumetric modulated arc therapy (VMAT) pretreatment QA. We evaluated two 3D dose reconstruction systems: ArcCHECK-3DVH system (Sun Nuclear corp.) and Varian dynalog-based dose reconstruction (DBDR) system, developed in-house. Fifteen prostate cancer patients (67.6 Gy/26 Fr), four head and neck cancer patient (66 Gy/33 Fr), and four esophagus cancer patients (60 Gy/30 Fr) treated with VMAT were studied. First, ArcCHECK measurement was performed on all plans; simultaneously, the Varian dynalog data sets that contained the actual delivered parameters (leaf positions, gantry angles, and cumulative MUs) were acquired from the Linac control system. Thereafter, the delivered 3D patient dose was reconstructed by 3DVH software (two different calculating modes were used: High Sensitivity (3DVH-HS) and Normal Sensitivity (3DVH-NS)) and in-house DBDR system. We evaluated the differences between the TPS-calculated dose and the reconstructed dose using 3D gamma passing rates and DVH dose index analysis. The average 3D gamma passing rates (3%/3 mm) between the TPScalculated dose and the reconstructed dose were 99.1 ± 0.6%, 99.7 ± 0.3%, and 100.0 ± 0.1% for 3DVH-HS, 3DVH-NS, and DBDR, respectively. For the prostate cases, the average differences between the TPS-calculated dose and reconstructed dose in the PTV mean dose were 1.52 ± 0.50%, -0.14 ± 0.55%, and -0.03 ± 0.07% for 3DVH- HS, 3DVH-NS, and DBDR, respectively. For the head and neck and esophagus cases, the dose difference to the TPS-calculated dose caused by an effect of heterogeneity was more apparent under the 3DVH dose reconstruction than the DBDR. Although with some residual dose reconstruction errors, these dose reconstruction methods can be clinically used as effective tools for DVH-based QA for VMAT delivery.
AB - The purpose of this study was comparing dose-volume histogram (DVH)-based plan verification methods for volumetric modulated arc therapy (VMAT) pretreatment QA. We evaluated two 3D dose reconstruction systems: ArcCHECK-3DVH system (Sun Nuclear corp.) and Varian dynalog-based dose reconstruction (DBDR) system, developed in-house. Fifteen prostate cancer patients (67.6 Gy/26 Fr), four head and neck cancer patient (66 Gy/33 Fr), and four esophagus cancer patients (60 Gy/30 Fr) treated with VMAT were studied. First, ArcCHECK measurement was performed on all plans; simultaneously, the Varian dynalog data sets that contained the actual delivered parameters (leaf positions, gantry angles, and cumulative MUs) were acquired from the Linac control system. Thereafter, the delivered 3D patient dose was reconstructed by 3DVH software (two different calculating modes were used: High Sensitivity (3DVH-HS) and Normal Sensitivity (3DVH-NS)) and in-house DBDR system. We evaluated the differences between the TPS-calculated dose and the reconstructed dose using 3D gamma passing rates and DVH dose index analysis. The average 3D gamma passing rates (3%/3 mm) between the TPScalculated dose and the reconstructed dose were 99.1 ± 0.6%, 99.7 ± 0.3%, and 100.0 ± 0.1% for 3DVH-HS, 3DVH-NS, and DBDR, respectively. For the prostate cases, the average differences between the TPS-calculated dose and reconstructed dose in the PTV mean dose were 1.52 ± 0.50%, -0.14 ± 0.55%, and -0.03 ± 0.07% for 3DVH- HS, 3DVH-NS, and DBDR, respectively. For the head and neck and esophagus cases, the dose difference to the TPS-calculated dose caused by an effect of heterogeneity was more apparent under the 3DVH dose reconstruction than the DBDR. Although with some residual dose reconstruction errors, these dose reconstruction methods can be clinically used as effective tools for DVH-based QA for VMAT delivery.
KW - Dose reconstruction
KW - Patient QA
KW - Radiotherapy
KW - VMAT
UR - http://www.scopus.com/inward/record.url?scp=85021369447&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85021369447&partnerID=8YFLogxK
U2 - 10.1002/acm2.12123
DO - 10.1002/acm2.12123
M3 - Article
C2 - 28649722
AN - SCOPUS:85021369447
SN - 1526-9914
VL - 18
SP - 206
EP - 214
JO - Journal of Applied Clinical Medical Physics
JF - Journal of Applied Clinical Medical Physics
IS - 4
ER -