TY - GEN
T1 - Compliance effect on the flow condition in vascular in vitro experiments
AU - Matsuura, Masami
AU - Tupin, Simon Andre
AU - Ohta, Makoto
N1 - Funding Information:
The authors acknowledge financial support received from the ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan) and JSPS KAKENHI Grant Number 18K18356. This study was supported by IFS Graduate Student Overseas Presentation Award.
Publisher Copyright:
© 2018 ASME.
PY - 2018
Y1 - 2018
N2 - Endovascular treatment has become the standard for intracranial aneurysm management. In vitro systems including an artery model are required for devices evaluation and clinician training. Although silicone is usually use for such model, its compliance is known to be lower than blood vessels. The purpose of this study was to analyze the influence of model material compliance on flow properties. Silicone and 12 [wt%] poly (vinyl alcohol) hydrogel (PVAH) were used to create two box-shaped models of significantly different compliance. The inner lumen geometry was a 4 [mm] diameter straight tube (parent vessel) and a 10 [mm] diameter sphere representing the aneurysm. A blood-mimicking fluid made of a mixture of glycerin, water and sodium iodide was used to reproduce the viscosity and density of blood and fit models refractive index. The circulation system consisted of a pulsatile blood pump and resistance valve. A flow rate of 250±50 [ml/min] and pressure from 75 to 115 [mmHg] were set inside the model. Pressure and flow rate sensors were used to monitor flow conditions before and after the model. Particle image velocimetry (PIV) was performed to record the difference of flow patterns inside the aneurysm of both model using a Nd:YAG solid laser system and fluorescent particles. Results revealed a significant change of flow conditions due to model compliance. Attenuation of the flow rate pulse was recorded between the inlet and the outlet of the both model. This attenuation was 51% for PVA-H model. Moreover, a time lag between outlet pressure and outlet flow rate curves was recorded in both model. This time lag was longer with the PVAH model, as this model exhibit a greater compliance. PIV experiments revealed significant changes of flow patterns and velocity inside the aneurysm. Because of its high compliance, PVA-H model walls moved under the pulsatile conditions. A change of flow direction and decrease of its velocity were observed near the proximal wall of the aneurysm, compared to the silicone model. Such differences might modify the stress on the wall of the aneurysm. To conclude, our experiments revealed that compliance has significant impacts on flow properties and should be taken into account for in vitro vascular model manufacturing.
AB - Endovascular treatment has become the standard for intracranial aneurysm management. In vitro systems including an artery model are required for devices evaluation and clinician training. Although silicone is usually use for such model, its compliance is known to be lower than blood vessels. The purpose of this study was to analyze the influence of model material compliance on flow properties. Silicone and 12 [wt%] poly (vinyl alcohol) hydrogel (PVAH) were used to create two box-shaped models of significantly different compliance. The inner lumen geometry was a 4 [mm] diameter straight tube (parent vessel) and a 10 [mm] diameter sphere representing the aneurysm. A blood-mimicking fluid made of a mixture of glycerin, water and sodium iodide was used to reproduce the viscosity and density of blood and fit models refractive index. The circulation system consisted of a pulsatile blood pump and resistance valve. A flow rate of 250±50 [ml/min] and pressure from 75 to 115 [mmHg] were set inside the model. Pressure and flow rate sensors were used to monitor flow conditions before and after the model. Particle image velocimetry (PIV) was performed to record the difference of flow patterns inside the aneurysm of both model using a Nd:YAG solid laser system and fluorescent particles. Results revealed a significant change of flow conditions due to model compliance. Attenuation of the flow rate pulse was recorded between the inlet and the outlet of the both model. This attenuation was 51% for PVA-H model. Moreover, a time lag between outlet pressure and outlet flow rate curves was recorded in both model. This time lag was longer with the PVAH model, as this model exhibit a greater compliance. PIV experiments revealed significant changes of flow patterns and velocity inside the aneurysm. Because of its high compliance, PVA-H model walls moved under the pulsatile conditions. A change of flow direction and decrease of its velocity were observed near the proximal wall of the aneurysm, compared to the silicone model. Such differences might modify the stress on the wall of the aneurysm. To conclude, our experiments revealed that compliance has significant impacts on flow properties and should be taken into account for in vitro vascular model manufacturing.
UR - http://www.scopus.com/inward/record.url?scp=85060369575&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060369575&partnerID=8YFLogxK
U2 - 10.1115/IMECE201887362
DO - 10.1115/IMECE201887362
M3 - Conference contribution
AN - SCOPUS:85060369575
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Biomedical and Biotechnology Engineering
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018
Y2 - 9 November 2018 through 15 November 2018
ER -