TY - GEN
T1 - Computational study of the synthetic jet on separated flow over a backward-facing step
AU - Okada, Koichi
AU - Fujii, Kozo
AU - Miyaji, Koji
AU - Oyama, Akira
AU - Nonomura, Taku
AU - Asada, Kengo
PY - 2010
Y1 - 2010
N2 - Frequency effects of the synthetic jet on the flow field over a backward facing step are investigated using numerical analysis. Three-dimensional Navier-Stokes equations are solved. Implicit large-eddy simulation using high-order compact difference scheme is conducted. The present analysis is addressed on the frequency characteristics of the synthetic jet for understanding frequency characteristics and flow filed. Three cases are analyzed; the case computing flow over backward facing step without control, the case computing flow with synthetic jet control at F+h =0.2, and the case computing flow with synthetic jet control at F +h =2.0, where non-dimensional frequency F +h is normalized with the height of backward-facing step and the freestream velocity. The present computation shows that separation length in the case of the flow controlled at F+h =0.2 is 20 percent shorter than the case without control. Strong two-dimensional vortices generated from the synthetic jet interact with the shear layer, which results in the increase of the Reynolds stress in the shear layer region. These vortices are deformed into three-dimensional structures, which make Reynolds stress stronger in the recirculation region. Size of the separation length in the case of the flow controlled at F+h =2.0 is almost the same as the case without control because the mixing between the synthetic jet and the shear layer is not enhanced. Weak and short periodic vortices induced from the synthetic jet do not interacts with the shear layer very much and diffuse in the recirculation region.
AB - Frequency effects of the synthetic jet on the flow field over a backward facing step are investigated using numerical analysis. Three-dimensional Navier-Stokes equations are solved. Implicit large-eddy simulation using high-order compact difference scheme is conducted. The present analysis is addressed on the frequency characteristics of the synthetic jet for understanding frequency characteristics and flow filed. Three cases are analyzed; the case computing flow over backward facing step without control, the case computing flow with synthetic jet control at F+h =0.2, and the case computing flow with synthetic jet control at F +h =2.0, where non-dimensional frequency F +h is normalized with the height of backward-facing step and the freestream velocity. The present computation shows that separation length in the case of the flow controlled at F+h =0.2 is 20 percent shorter than the case without control. Strong two-dimensional vortices generated from the synthetic jet interact with the shear layer, which results in the increase of the Reynolds stress in the shear layer region. These vortices are deformed into three-dimensional structures, which make Reynolds stress stronger in the recirculation region. Size of the separation length in the case of the flow controlled at F+h =2.0 is almost the same as the case without control because the mixing between the synthetic jet and the shear layer is not enhanced. Weak and short periodic vortices induced from the synthetic jet do not interacts with the shear layer very much and diffuse in the recirculation region.
UR - http://www.scopus.com/inward/record.url?scp=84881438013&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84881438013&partnerID=8YFLogxK
U2 - 10.1115/IMECE2010-38767
DO - 10.1115/IMECE2010-38767
M3 - Conference contribution
AN - SCOPUS:84881438013
SN - 9780791844441
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
SP - 161
EP - 170
BT - ASME 2010 International Mechanical Engineering Congress and Exposition, IMECE 2010
T2 - ASME 2010 International Mechanical Engineering Congress and Exposition, IMECE 2010
Y2 - 12 November 2010 through 18 November 2010
ER -