TY - JOUR
T1 - Conservative principle for differential forms
AU - Masamune, Jun
PY - 2007
Y1 - 2007
N2 - Motivated by recent developments on the conservative principle for differential forms, we study sufficient conditions for a manifold to satisfy that principle.
AB - Motivated by recent developments on the conservative principle for differential forms, we study sufficient conditions for a manifold to satisfy that principle.
KW - Cauchy problem
KW - Conservative principle
KW - Differential forms
UR - http://www.scopus.com/inward/record.url?scp=84887506264&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84887506264&partnerID=8YFLogxK
U2 - 10.4171/RLM/501
DO - 10.4171/RLM/501
M3 - Article
AN - SCOPUS:84887506264
SN - 1120-6330
VL - 18
SP - 351
EP - 358
JO - Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni
JF - Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni
IS - 4
ER -