Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle

Taku Nedachi, Hideaki Fujita, Makoto Kanzaki

Research output: Contribution to journalArticlepeer-review

184 Citations (Scopus)

Abstract

Adequate exercise leads to a vast variety of physiological changes in skeletal muscle as well as other tissues/organs and is also responsible for maintaining healthy muscle displaying enhanced insulin-responsive glucose uptake via GLUT4 translocation. We generated highly developed contractile C 2C12 myotubes by manipulating intracellular Ca 2+ transients with electric pulse stimulation (EPS) that is endowed with properties similar to those of in vivo skeletal muscle in terms of 1) excitation-induced contractile activity as a result of de novo sarcomere formation, 2) activation of both the AMP kinase and stress-activated MAP kinase cascades, and 3) improved insulin responsiveness as assessed by GLUT4 recycling. Tbc1d1, a Rab-GAP implicated in exercise-induced GLUT4 translocation in skeletal muscle, also appeared to be phosphorylated on Ser231 after EPS-induced contraction. In addition, a switch in myosin heavy-chain (MHC) expression from "fast type" to "slow type" was observed in the C2C12 myotubes endowed with EPS-induced repetitive contractility. Taking advantage of these highly developed contractile C 2C12 myotubes, we identified myotube-derived factors responsive to EPS-evoked contraction, including the CXC chemokines CXCL1/KC and CXCL5/LIX, as well as IL-6, previously reported to be upregulated in contracting muscles in vivo. Importantly, animal treadmill experiments revealed that exercise significantly increased systemic levels of CXCL1/KC, perhaps derived from contracting muscle. Taken together, these results confirm that we have established a specialized muscle cell culture model allowing contraction-inducible cellular responses to be explored. Utilizing this model, we identified contraction-inducible myokines potentially linked to the metabolic alterations, immune responses, and angiogenesis induced by exercise.

Original languageEnglish
Pages (from-to)E1191-E1204
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Volume295
Issue number5
DOIs
Publication statusPublished - 2008 Nov

Keywords

  • Adenosine 5′- monophosphate kinase
  • Glucose transporter 4
  • Insulin
  • Myokine
  • Tbc1d1

Fingerprint

Dive into the research topics of 'Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle'. Together they form a unique fingerprint.

Cite this