TY - JOUR
T1 - Contribution of Na+/Ca2+ exchange current to the formation of delayed afterdepolarizations in intact rat ventricular muscle
AU - Sugai, Yoshinao
AU - Miura, Masahito
AU - Hirose, Masanori
AU - Wakayama, Yuji
AU - Endoh, Hideaki
AU - Nishio, Taichi
AU - Watanabe, Jun
AU - Ter Keurs, Henk E.D.J.
AU - Shirato, Kunio
AU - Shimokawa, Hiroaki
PY - 2009/6
Y1 - 2009/6
N2 - Aim: To evaluate the role of the Na+-Ca2+ exchange current in the induction of arrhythmias during Ca2+ waves, we investigated the relationship between Ca2+ waves and delayed afterdepolarizations (DADs) and further investigated the effect of KB-R7943, an Na+-Ca2+ exchange inhibitor, on such relationship in multicellular muscle. Methods: Force, sarcomere length, membrane potential, and [Ca2+]i dynamics were measured in 32 ventricular trabeculae from rat hearts. After the induction of Ca2+ waves by trains of electrical stimuli (400, 500, or 600 ms intervals) for 7.5 seconds, 23 Ca2+ waves in the absence of KB-R7943 and cilnidipine ([Ca 2+]o = 2.3 ± 0.2 mmol/L), 11 Ca2+ waves in the presence of 10 μmol/L KB-R7943 ([Ca2+]o = 2.5 ± 0.5 mmol/L), and 8 Ca2+ waves in the presence of 1 μmol/L cilnidipine ([Ca2+]o = 4.1 ± 0.3 mmol/L) were measured at a sarcomere length of 2.1 μm (23.9 ± 0.8°C). Results: The amplitude of DADs correlated with the velocity (r = 0.90) and the amplitude (r = 0.90) of Ca2+ waves. The amplitude of DADs was significantly decreased to ∼40% of the initial value by 10 μmol/L KB-R7943. Conclusions: These results suggest that the velocity and the amplitude of Ca2+ waves determine the formation of DADs principally through the activation of the Na+-Ca2+ exchange current, thereby inducing triggered arrhythmias in multicellular ventricular muscle.
AB - Aim: To evaluate the role of the Na+-Ca2+ exchange current in the induction of arrhythmias during Ca2+ waves, we investigated the relationship between Ca2+ waves and delayed afterdepolarizations (DADs) and further investigated the effect of KB-R7943, an Na+-Ca2+ exchange inhibitor, on such relationship in multicellular muscle. Methods: Force, sarcomere length, membrane potential, and [Ca2+]i dynamics were measured in 32 ventricular trabeculae from rat hearts. After the induction of Ca2+ waves by trains of electrical stimuli (400, 500, or 600 ms intervals) for 7.5 seconds, 23 Ca2+ waves in the absence of KB-R7943 and cilnidipine ([Ca 2+]o = 2.3 ± 0.2 mmol/L), 11 Ca2+ waves in the presence of 10 μmol/L KB-R7943 ([Ca2+]o = 2.5 ± 0.5 mmol/L), and 8 Ca2+ waves in the presence of 1 μmol/L cilnidipine ([Ca2+]o = 4.1 ± 0.3 mmol/L) were measured at a sarcomere length of 2.1 μm (23.9 ± 0.8°C). Results: The amplitude of DADs correlated with the velocity (r = 0.90) and the amplitude (r = 0.90) of Ca2+ waves. The amplitude of DADs was significantly decreased to ∼40% of the initial value by 10 μmol/L KB-R7943. Conclusions: These results suggest that the velocity and the amplitude of Ca2+ waves determine the formation of DADs principally through the activation of the Na+-Ca2+ exchange current, thereby inducing triggered arrhythmias in multicellular ventricular muscle.
KW - Ca waves
KW - Delayed afterdepolarizations
UR - http://www.scopus.com/inward/record.url?scp=68249097103&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=68249097103&partnerID=8YFLogxK
U2 - 10.1097/FJC.0b013e3181a913f4
DO - 10.1097/FJC.0b013e3181a913f4
M3 - Article
C2 - 19487959
AN - SCOPUS:68249097103
SN - 0160-2446
VL - 53
SP - 517
EP - 522
JO - Journal of Cardiovascular Pharmacology
JF - Journal of Cardiovascular Pharmacology
IS - 6
ER -