TY - JOUR
T1 - Controlled release of growth factors based on biodegradation of gelatin hydrogel
AU - Yamamoto, M.
AU - Ikada, Y.
AU - Tabata, Y.
N1 - Funding Information:
This reeaswasrsucpporhetbyda ‘Rcefohsr theeFutaurerProg’ram grant from the Japan SoycforitheeProtmotinoof Science (JSS-RFTPF96I00203).
PY - 2001
Y1 - 2001
N2 - To develop a carrier for the controlled release of biologically-active growth factors, biodegradable hydrogels were prepared through glutaraldehyde cross-linking of gelatin with isoelectric points (IEP) of 5.0 and 9.0, i.e. 'acidic' and 'basic' gelatins, respectively. Radioiodinated growth factors were used to investigate their sorption and desorption from the hydrogel of both types of gelatin. Basic fibroblast growth factor (bFGF) and transforming growth factor-β1 (TGF-β1) were well sorbed with time to the acidic gelatin hydrogel, while less sorption was observed for the basic gelatin hydrogel. This could be explained in terms of the electrostatic interaction between the growth factors and the acidic gelatin. However, bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF), though their IEPs are higher than 7.0, were sorbed to the acidic gelatin hydrogel to a smaller extent than the two other growth factors. Under in vitro non-degradation conditions, approximately 20% of the incorporated bFGF and TGF-β1 was desorbed from the hydrogels within the initial 40 min, followed by no further substantial desorption, whereas large initial desorption was observed for BMP-2 and VEGF. When implanted in the back subcutis of mice, gelatin hydrogels were degraded over time. Each growth factor was retained in vivo being incorporated in the acidic gelatin hydrogel: the smaller the in vitro desorption amount from the hydrogel, the longer the in vivo retention time. The in vivo profile of bFGF and TGF-β1 retention was in good accordance with that of the hydrogel. These findings indicate that the growth factor immobilized to the acidic gelatin hydrogel through ionic interaction was released in vivo as a result of hydrogel degradation.
AB - To develop a carrier for the controlled release of biologically-active growth factors, biodegradable hydrogels were prepared through glutaraldehyde cross-linking of gelatin with isoelectric points (IEP) of 5.0 and 9.0, i.e. 'acidic' and 'basic' gelatins, respectively. Radioiodinated growth factors were used to investigate their sorption and desorption from the hydrogel of both types of gelatin. Basic fibroblast growth factor (bFGF) and transforming growth factor-β1 (TGF-β1) were well sorbed with time to the acidic gelatin hydrogel, while less sorption was observed for the basic gelatin hydrogel. This could be explained in terms of the electrostatic interaction between the growth factors and the acidic gelatin. However, bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF), though their IEPs are higher than 7.0, were sorbed to the acidic gelatin hydrogel to a smaller extent than the two other growth factors. Under in vitro non-degradation conditions, approximately 20% of the incorporated bFGF and TGF-β1 was desorbed from the hydrogels within the initial 40 min, followed by no further substantial desorption, whereas large initial desorption was observed for BMP-2 and VEGF. When implanted in the back subcutis of mice, gelatin hydrogels were degraded over time. Each growth factor was retained in vivo being incorporated in the acidic gelatin hydrogel: the smaller the in vitro desorption amount from the hydrogel, the longer the in vivo retention time. The in vivo profile of bFGF and TGF-β1 retention was in good accordance with that of the hydrogel. These findings indicate that the growth factor immobilized to the acidic gelatin hydrogel through ionic interaction was released in vivo as a result of hydrogel degradation.
KW - Biodegradation
KW - Controlled release
KW - Gelatin
KW - Growth factor
KW - Hydrogel
UR - http://www.scopus.com/inward/record.url?scp=0035051778&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035051778&partnerID=8YFLogxK
U2 - 10.1163/156856201744461
DO - 10.1163/156856201744461
M3 - Article
C2 - 11334191
AN - SCOPUS:0035051778
SN - 0920-5063
VL - 12
SP - 77
EP - 88
JO - Journal of Biomaterials Science, Polymer Edition
JF - Journal of Biomaterials Science, Polymer Edition
IS - 1
ER -