Cool and luminous transients from mass-losing binary stars

Ondřej Pejcha, Brian D. Metzger, Kengo Tomida

Research output: Contribution to journalConference articlepeer-review

Abstract

Motivated by the recently established link between luminous red novae (LRN) and catastrophic phases of binary star evolution, we perform smoothed particle hydrodynamic calculations of outflows from binary stars with realistic equation of state and opacities. We focus on the case of mass loss from the outer Lagrangian point (L2), where the resulting spiral stream experiences tidal torques from the binary and becomes unbound. As the individual spiral arms merge and collide near the binary, the outflow thermalizes about 5% of its kinetic energy. For reasonable binary parameters, the outflow can produce luminosities up to 106 L with effective temperatures between 500 and 6000 K, depending on the optical depth through the outflow. This is compatible with many examples of the LRN such as V838 Mon and V1309 Sco. The luminosity and the expansion velocity are correlated, as is roughly observed in the known LRN. The outflow readily forms dust, leading to great variations of the appearance of the transient as a function of the viewing angle. Our results are relevant for a more general class of equatorial outflows with asymptotic velocity and heating rate near the binary proportional to its orbital speed.

Original languageEnglish
Article number072021
JournalJournal of Physics: Conference Series
Volume728
Issue number7
DOIs
Publication statusPublished - 2016 Aug 8
Event11th Pacific Rim Conference on Stellar Astrophysics: Physics and Chemistry of the Late Stages of Stellar Evolution - Hong Kong, China
Duration: 2015 Dec 142015 Dec 17

Fingerprint

Dive into the research topics of 'Cool and luminous transients from mass-losing binary stars'. Together they form a unique fingerprint.

Cite this