Creep-fatigue properties for repair welded joint

Isamu Nonaka, Keiji Kubushiro, Takuya Ito, Yoshio Takagi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Repair welding has been performed when damage has been detected in aged power boiler piping. Discontinuity of deformation ability occurs between the new weld metal and degraded used material in the repair welded joint. Therefore creep-fatigue properties become important under displacement controlled piping system loading. Partial repair welded joint specimen and full repair weld joint specimen were made using the retired 2.25Cr-1Mo steel main steam header. In order to clarify the creep-fatigue properties for two kinds of repair welded joint specimens, fatigue tests under 0.7% strain range with 60min tensile strain dwell were performed at 600C. Both kinds of specimens were necked and fractured at the heat affected zone of welded joint due to the axial strain concentration and ratcheting at heat affected zone. The creep-fatigue life of partial repair weld joint specimen was about half of that of full repair weld joint specimen. This may be due to the low creep-fatigue resistance of the heat affected zone for partial repair welded joint specimen.

Original languageEnglish
Title of host publicationProceedings of 2006 ASME Pressure Vessels and Piping Division Conference - ASME PVP2006/ICPVT-11 Conference - Pressure Vessel Technologies for the Global Community
DOIs
Publication statusPublished - 2006 Nov 29
EventASME PVP2006/ICPVT-11 Conference - Vancouver, BC, Canada
Duration: 2006 Jul 232006 Jul 27

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume2006
ISSN (Print)0277-027X

Other

OtherASME PVP2006/ICPVT-11 Conference
Country/TerritoryCanada
CityVancouver, BC
Period06/7/2306/7/27

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Creep-fatigue properties for repair welded joint'. Together they form a unique fingerprint.

Cite this