Abstract
Employing newly developed high strength and good conductive (Nb,Ti)3Sn wires with CuNb composite stabilizer, it is possible to reduce a coil weight of a large bore superconducting magnet by 50-70%. A cryocooled large bore (Nb,Ti)3Sn superconducting magnet for a hybrid magnet is made compactly by a react and wind and tension-winding method. This (Nb,Ti)3Sn coil formation technique results in no need of a large heat-treatment furnace and a vacuum epoxy-impregnation equipment for a large-scale superconducting magnet. A 10 T-360 mm room temperature bore cryocooled superconducting magnet is being developed for a hybrid magnet system.
Original language | English |
---|---|
Pages (from-to) | 440-443 |
Number of pages | 4 |
Journal | IEEE Transactions on Applied Superconductivity |
Volume | 9 |
Issue number | 2 PART 1 |
DOIs | |
Publication status | Published - 1999 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Electrical and Electronic Engineering