Abstract
We consider a motion of non-closed planar curves with infinite length. The motion is governed by a steepest descent flow for the geometric functional which consists of the sum of the length functional and the total squared curvature. We call the flow shortening-straightening flow. In this paper, first we prove a long time existence result for the shortening-straightening flow for non-closed planar curves with infinite length. Then we show that the solution converges to a stationary solution as time goes to infinity. Moreover we give a classification of the stationary solution.
Original language | English |
---|---|
Pages (from-to) | 1093-1132 |
Number of pages | 40 |
Journal | Journal of Differential Equations |
Volume | 256 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2014 Feb 1 |
Keywords
- Elastic curves
- Fourth order equations
- Geometric evolution equations