Abstract
Although Ca2+-induced Ca2+ release (CICR) via ryanodine receptors has been found to occur in intact neurons, little is known about the physiological processes that regulate it. We studied the effects of cyclic ADP-ribose (cADPR) on CICR in cultured bullfrog sympathetic neurons by fura-2 fluorescence recording and patch-clamp techniques. cADPR applied through a patch pipette augmented action potential- or depolarizing pulse-induced rises in intracellular Ca2+ without a change in Ca2+ entry initiating the responses, but not in the presence of ryanodine. Likewise, cADPR enhanced a single or oscillatory rise(s) in intracellular Ca2+ induced by caffeine. These results strongly suggest that cADPR can be an endogenous modulator of ryanodine receptors in neurons.
Original language | English |
---|---|
Pages (from-to) | 1073-1079 |
Number of pages | 7 |
Journal | Neuron |
Volume | 12 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1994 May |