Abstract
Objectives: This preliminary study aimed to develop a deep learning (DL) model using diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps to predict local recurrence and 2-year progression-free survival (PFS) in laryngeal and hypopharyngeal cancer patients treated with various forms of radiotherapy-related curative therapy. Methods: Seventy patients with laryngeal and hypopharyngeal cancers treated by radiotherapy, chemoradiotherapy, or induction-(chemo)radiotherapy were enrolled and divided into training (N = 49) and test (N = 21) groups based on presentation timeline. All patients underwent MR before and 4 weeks after the start of radiotherapy. The DL models that extracted imaging features on pre- and intra-treatment DWI and ADC maps were trained to predict the local recurrence within a 2-year follow-up. In the test group, each DL model was analyzed for recurrence prediction. Additionally, the Kaplan-Meier and multivariable Cox regression analyses were performed to evaluate the prognostic significance of the DL models and clinical variables. Results: The highest area under the receiver operating characteristics curve and accuracy for predicting the local recurrence in the DL model were 0.767 and 81.0%, respectively, using intra-treatment DWI (DWIintra). The log-rank test showed that DWIintra was significantly associated with PFS (p = 0.013). DWIintra was an independent prognostic factor for PFS in multivariate analysis (p = 0.023). Conclusion: DL models using DWIintra may have prognostic value in patients with laryngeal and hypopharyngeal cancers treated by curative radiotherapy. The model-related findings may contribute to determining the therapeutic strategy in the early stage of the treatment. Key Points: • Deep learning models using intra-treatment diffusion-weighted imaging have prognostic value in patients with laryngeal and hypopharyngeal cancers treated by curative radiotherapy. • The findings from these models may contribute to determining the therapeutic strategy at the early stage of the treatment.
Original language | English |
---|---|
Pages (from-to) | 5353-5361 |
Number of pages | 9 |
Journal | European Radiology |
Volume | 32 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2022 Aug |
Externally published | Yes |
Keywords
- Deep learning
- Diffusion magnetic resonance imaging
- Hypopharyngeal cancer
- Laryngeal cancer
- Prognosis
ASJC Scopus subject areas
- Radiology Nuclear Medicine and imaging