TY - JOUR
T1 - Design of retrodiffraction gratings for polarization-insensitive and polarization-sensitive characteristics by using the Taguchi method
AU - Lee, Cha Bum
AU - Hane, Kazuhiro
AU - Kim, Wan Soo
AU - Lee, Sun Kyu
PY - 2008/6/20
Y1 - 2008/6/20
N2 - We present the design of retrodiffraction gratings that utilize total internal reflection (TIR) in a lamellar configuration to achieve high performance for both TE and TM polarized light and polarization-sensitive performance for gratings behaving as polarizer filters; the design was based on rigorous coupled wave analysis (RCWA) and the Taguchi method. The components can thus be fabricated from a single dielectric material and do not have to be coated with a metallic or dielectric film layer to enhance the reflectance. The effects of the structural and optical parameters of lamellar gratings were investigated, and the TIR gratings in a lamellar configuration were structurally and optically optimized in terms of the signal-to-noise ratio (S/N) and a statistical analysis of variance (ANOVA) of the refractive index, grating period, filling factor, and grating depth as control factors and the estimated efficiency by RCWA as a noise factor. For more accurate robustness, a two-step optimization process was used for each purpose. For TIR gratings designed to perform similarly for TE and TM incident polarization, the -lst-order efficiencies were estimated to be up to 92.0% and 88.5% for TE and TM polarization, respectively. Also, for the TIR gratings designed to achieve polarization-sensitive performance when behaving as a polarizer filters, the - 1st-order diffraction efficiencies for TE and TM polarization were estimated to be up to 95.5% and 2.7%, respectively. From these analysis results, it was confirmed that the Taguchi method shows feasibility for an optimization approach to a technique for designing optical devices.
AB - We present the design of retrodiffraction gratings that utilize total internal reflection (TIR) in a lamellar configuration to achieve high performance for both TE and TM polarized light and polarization-sensitive performance for gratings behaving as polarizer filters; the design was based on rigorous coupled wave analysis (RCWA) and the Taguchi method. The components can thus be fabricated from a single dielectric material and do not have to be coated with a metallic or dielectric film layer to enhance the reflectance. The effects of the structural and optical parameters of lamellar gratings were investigated, and the TIR gratings in a lamellar configuration were structurally and optically optimized in terms of the signal-to-noise ratio (S/N) and a statistical analysis of variance (ANOVA) of the refractive index, grating period, filling factor, and grating depth as control factors and the estimated efficiency by RCWA as a noise factor. For more accurate robustness, a two-step optimization process was used for each purpose. For TIR gratings designed to perform similarly for TE and TM incident polarization, the -lst-order efficiencies were estimated to be up to 92.0% and 88.5% for TE and TM polarization, respectively. Also, for the TIR gratings designed to achieve polarization-sensitive performance when behaving as a polarizer filters, the - 1st-order diffraction efficiencies for TE and TM polarization were estimated to be up to 95.5% and 2.7%, respectively. From these analysis results, it was confirmed that the Taguchi method shows feasibility for an optimization approach to a technique for designing optical devices.
UR - http://www.scopus.com/inward/record.url?scp=49649096621&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=49649096621&partnerID=8YFLogxK
U2 - 10.1364/AO.47.003246
DO - 10.1364/AO.47.003246
M3 - Article
AN - SCOPUS:49649096621
SN - 1559-128X
VL - 47
SP - 3246
EP - 3253
JO - Applied Optics
JF - Applied Optics
IS - 18
ER -