TY - JOUR
T1 - Determination of trace levels of uranium and thorium in high purity gadolinium sulfate using the ICP-MS with solid-phase chromatographic extraction resin
AU - Ito, S.
AU - Takaku, Y.
AU - Ikeda, M.
AU - Kishimoto, Y.
N1 - Funding Information:
This work was supported by the JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas No. 26104007, Grant-in-Aid for Specially Promoted Research No. 26000003, and Grant-in-Aid for Young Scientists No. 17K14290. We also thank the companies who provided the purified Gd2(SO4)3·8H2O samples.
Publisher Copyright:
© The Author(s) 2017. Published by Oxford University Press on behalf of the Physical Society of Japan.
PY - 2017/11/1
Y1 - 2017/11/1
N2 - The new Super-Kamiokande-Gadolinium (SK-Gd) project is an upgrade of the Super-Kamiokande (SK) detector. In the SK-Gd project, 0.2% Gd-2(SO-4)-3 is loaded into the 50 kton water tank of the SK. One of the main purposes of the project is to discover supernova relic neutrinos. Neutrino measurements and proton decay searches will also be performed in the SK-Gd. In order to measure solar neutrinos with a low energy threshold of \sim3.5 MeV in the SK-Gd, the main radioactive contaminations, ^{238}U and ^{232}Th, in Gd-2(SO-4)-3{\cdot}8H-2O, should be minimized before loading. Our maximum levels for U and Th are 5 mBq (U)/kg (Gd-2(SO-4)-3{\cdot}8H-2O) and 0.05 mBq (Th)/kg (Gd-2(SO-4)-3{\cdot}8H-2O). In order to measure such low concentrations of U and Th in Gd-2(SO-4)-3{\cdot}8H-2O, we developed the solid-phase extraction technique. Using this method, about 90% or more U and Th could be efficiently extracted while Gd was reduced by a factor of about 10^{4}. This allowed these radioactivity contaminations to be measured precisely as 0.04 mBq/kg (Gd-2(SO-4)-3{\cdot}8H-2O) for U and 0.01 mBq/kg (Gd-2(SO-4)-3{\cdot}8H-2O) for Th. We measured three pure Gd-2(SO-4)-3{\cdot}8H-2O samples using this method and estimated that the purest one contained <0.04 mBq (U)/kg (Gd-2(SO-4)-3{\cdot}8H-2O) and 0.06 \pm 0.01 mBq (Th)/kg (Gd-2(SO-4)-3{\cdot}8H-2O) by the ICP-MS.
AB - The new Super-Kamiokande-Gadolinium (SK-Gd) project is an upgrade of the Super-Kamiokande (SK) detector. In the SK-Gd project, 0.2% Gd-2(SO-4)-3 is loaded into the 50 kton water tank of the SK. One of the main purposes of the project is to discover supernova relic neutrinos. Neutrino measurements and proton decay searches will also be performed in the SK-Gd. In order to measure solar neutrinos with a low energy threshold of \sim3.5 MeV in the SK-Gd, the main radioactive contaminations, ^{238}U and ^{232}Th, in Gd-2(SO-4)-3{\cdot}8H-2O, should be minimized before loading. Our maximum levels for U and Th are 5 mBq (U)/kg (Gd-2(SO-4)-3{\cdot}8H-2O) and 0.05 mBq (Th)/kg (Gd-2(SO-4)-3{\cdot}8H-2O). In order to measure such low concentrations of U and Th in Gd-2(SO-4)-3{\cdot}8H-2O, we developed the solid-phase extraction technique. Using this method, about 90% or more U and Th could be efficiently extracted while Gd was reduced by a factor of about 10^{4}. This allowed these radioactivity contaminations to be measured precisely as 0.04 mBq/kg (Gd-2(SO-4)-3{\cdot}8H-2O) for U and 0.01 mBq/kg (Gd-2(SO-4)-3{\cdot}8H-2O) for Th. We measured three pure Gd-2(SO-4)-3{\cdot}8H-2O samples using this method and estimated that the purest one contained <0.04 mBq (U)/kg (Gd-2(SO-4)-3{\cdot}8H-2O) and 0.06 \pm 0.01 mBq (Th)/kg (Gd-2(SO-4)-3{\cdot}8H-2O) by the ICP-MS.
UR - http://www.scopus.com/inward/record.url?scp=85040066076&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85040066076&partnerID=8YFLogxK
U2 - 10.1093/ptep/ptx145
DO - 10.1093/ptep/ptx145
M3 - Article
AN - SCOPUS:85040066076
SN - 2050-3911
VL - 2017
JO - Progress of Theoretical and Experimental Physics
JF - Progress of Theoretical and Experimental Physics
IS - 11
M1 - 113H01
ER -