Determination of triacylglycerol oxidation mechanisms in canola oil using liquid chromatography–tandem mass spectrometry

Shunji Kato, Naoki Shimizu, Yasuhiko Hanzawa, Yurika Otoki, Junya Ito, Fumiko Kimura, Susumu Takekoshi, Masayoshi Sakaino, Takashi Sano, Takahiro Eitsuka, Teruo Miyazawa, Kiyotaka Nakagawa

Research output: Contribution to journalArticlepeer-review

46 Citations (Scopus)


Triacylglycerol (TG), the main component of edible oil, is oxidized by thermal-or photo-oxidation to form TG hydroperoxide (TGOOH) as the primary oxidation product. Since TGOOH and its subsequent oxidation products cause not only the deterioration of oil quality but also various toxicities, preventing the oxidation of edible oils is essential. Therefore understanding oxidation mechanisms that cause the formation of TGOOH is necessary. Since isomeric information of lipid hydroperoxide provides insights about oil oxidation mechanisms, we focused on dioleoyl-(hydroperoxy octadecadienoyl)-TG (OO-HpODE-TG) isomers, which are the primary oxidation products of the most abundant TG molecular species (dioleoyl-linoleoyl-TG) in canola oil. To secure highly selective and sensitive analysis, authentic OO-HpODE-TG isomer references (i.e., hydroperoxide positional/geometrical isomers) were synthesized and analyzed with HPLC-MS/MS. With the use of the method, photo-or thermal-oxidized edible oils were analyzed. While dioleoyl-(10-hydroperoxy-8E,12Z-octadecadienoyl)-TG (OO-(10-HpODE)-TG) and dioleoyl-(12-hydroperoxy-9Z,13E-octadecadienoyl)-TG (OO-(12-HpODE)-TG) were characteristically detected in photo-oxidized oils, dioleoyl-(9-hydroperoxy-10E,12E-octadecadienoyl)-TG and dioleoyl-(13-hydroperoxy-9E,11E-octadecadienoyl)-TG were found to increase depending on temperature in thermal-oxidized oils. These results prove that our methods not only evaluate oil oxidation in levels that are unquantifiable with peroxide value, but also allows for the determination of oil oxidation mechanisms. From the analysis of marketed canola oils, photo-oxidized products (i.e., OO-(10-HpODE)-TG and OO-(12-HpODE)-TG) were characteristically accumulated compared to the oil analyzed immediately after production. The method described in this paper is valuable in the understanding of oil and food oxidation mechanisms, and may be applied to the development of preventive methods against food deterioration.

Original languageEnglish
Article number1
Journalnpj Science of Food
Issue number1
Publication statusPublished - 2018

ASJC Scopus subject areas

  • Food Science
  • Public Health, Environmental and Occupational Health


Dive into the research topics of 'Determination of triacylglycerol oxidation mechanisms in canola oil using liquid chromatography–tandem mass spectrometry'. Together they form a unique fingerprint.

Cite this