Development of an implantable undulation type ventricular assist device for control of organ circulation

Tomoyuki Yambe, Yusuke Abe, Kou Imachi, Yasuyuki Shiraishi, Mune Ichi Shibata, Tasuku Yamaguchi, Quintian Wang, Xudong Duan, Hongjian Liu, Makoto Yoshizawa, Akira Tanaka, Hidetoshi Matsuki, Fumihiro Sato, You Ichi Haga, Masayoshi Esashi, Kouichi Tabayashi, Yoshinori Mitamura, Hiroshi Sasada, Mitsuo Umezu, Takehisa MatsudaShin Ichi Nitta

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

It is well known that a rotary blood pump (RP) is effective as a small ventricular assist device (VAD). It might be still more effective if pulsation was available. The undulation pump (UP), which is a type of small RP, can also produce pulsation. In Japan, a development project for an implantable type UP ventricular assist device (UPVAD) is now advanced. Six universities and some companies together have been in charge of the development project for 5 years. In this study, the influence which the UP under development has on circulation in internal organs was investigated. Goats with the same weight as an average Asian person were used for the experiment. The left chest cavity was opened after resection of the fourth rib and the heart was approached. A cannula was inserted in the left ventricle from the apex. An outflow cannula was inserted into the left descending aorta. Heart muscle was excised using a newly developed puncher. The UPVAD was implanted using a left-heart bypass system. The myocardial blood flow, carotid arterial blood flow, and the kidney blood flow were recorded together with an electrocardiogram, blood pressure, and the flow rate. In these animal experiments, the blood circulation dynamic state was stabilized and sufficient support of the left heart was observed. Myocardial blood flow, carotid arterial flow, and a kidney blood flow increase resulting from UPVAD support was observed. Often the problem of multiple organ failure is important at the time of clinical application of a ventricular assist device. Assisting circulation to internal organs is important for prevention of multiple organ failure. It was concluded that the UPVAD might be useful for prevention of multiple organ failure.

Original languageEnglish
Pages (from-to)940-944
Number of pages5
JournalArtificial Organs
Volume28
Issue number10
DOIs
Publication statusPublished - 2004 Oct

Keywords

  • Laser doppler flowmeter
  • Multiple organ failure
  • Organ circulation
  • Undulation pump
  • Ventricular assist device

ASJC Scopus subject areas

  • Bioengineering
  • Medicine (miscellaneous)
  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Development of an implantable undulation type ventricular assist device for control of organ circulation'. Together they form a unique fingerprint.

Cite this