TY - GEN
T1 - Development of Cu coating on ceramic substrates by low pressure cold spray and its deposition mechanism analysis
AU - Yu, Minjae
AU - Ichikawa, Yuji
AU - Ogawa, Kazuhiro
N1 - Publisher Copyright:
© 2021 Trans Tech Publications Ltd, Switzerland.
PY - 2021
Y1 - 2021
N2 - Cold spray (CS) is a solid-state deposition technique of micron-sized metallic powder in an ultra-high velocity gas using a de Laval nozzle. CS is a unique deposition technique due to its use of relatively lower gas temperatures in comparison to other thermal processes. Consequently, hightemperature oxidation and phase transformations of deposited powders are largely restricted while the operating cost of CS is much lower than that of other thermal processes. Generally, the low pressure cold spray (LPCS) technique is used for the deposition of metallic powders on metallic substrates, while only a few studies of metallic particle deposition on ceramic substrates have been conducted, and it was found that the deposition of metallic powders on ceramic substrates was quite difficult. In this study, improved LPCS deposition of copper coatings on zirconia substrates was investigated. It is known that deposition of a metallic powder on a ceramic substrate is difficult due to the differences in material bonding and several properties of the two materials. These difficulties in LPCS deposition were solved using three different approaches, namely 1) use of copper and aluminum composite powders and 2) laser pre-treatment and 3) laser texturing of zirconia substrates. It was found that pure copper powder coatings on the as-received and various treated substrates were delaminated in the interface as expected. However, the deposition was improved for all substrates by using the copper and aluminum composite powder. While the laser pre-treated substrate was not effective for the deposition of the copper and aluminum composite powder, thick coatings were obtained for the deposition on the laser pre-treated with heat treatment substrate and the laser-textured substrate.
AB - Cold spray (CS) is a solid-state deposition technique of micron-sized metallic powder in an ultra-high velocity gas using a de Laval nozzle. CS is a unique deposition technique due to its use of relatively lower gas temperatures in comparison to other thermal processes. Consequently, hightemperature oxidation and phase transformations of deposited powders are largely restricted while the operating cost of CS is much lower than that of other thermal processes. Generally, the low pressure cold spray (LPCS) technique is used for the deposition of metallic powders on metallic substrates, while only a few studies of metallic particle deposition on ceramic substrates have been conducted, and it was found that the deposition of metallic powders on ceramic substrates was quite difficult. In this study, improved LPCS deposition of copper coatings on zirconia substrates was investigated. It is known that deposition of a metallic powder on a ceramic substrate is difficult due to the differences in material bonding and several properties of the two materials. These difficulties in LPCS deposition were solved using three different approaches, namely 1) use of copper and aluminum composite powders and 2) laser pre-treatment and 3) laser texturing of zirconia substrates. It was found that pure copper powder coatings on the as-received and various treated substrates were delaminated in the interface as expected. However, the deposition was improved for all substrates by using the copper and aluminum composite powder. While the laser pre-treated substrate was not effective for the deposition of the copper and aluminum composite powder, thick coatings were obtained for the deposition on the laser pre-treated with heat treatment substrate and the laser-textured substrate.
KW - Composite powders
KW - Deposition
KW - Laser texturing
KW - Low pressure cold spray
KW - Oxygen defect
UR - http://www.scopus.com/inward/record.url?scp=85100890637&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100890637&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/MSF.1016.1703
DO - 10.4028/www.scientific.net/MSF.1016.1703
M3 - Conference contribution
AN - SCOPUS:85100890637
SN - 9783035736304
T3 - Materials Science Forum
SP - 1703
EP - 1709
BT - THERMEC 2021 - International Conference on Processing and Manufacturing of Advanced Materials Processing, Fabrication, Properties, Applications
A2 - Ionescu, Mihail
A2 - Sommitsch, Christof
A2 - Poletti, Cecilia
A2 - Kozeschnik, Ernst
A2 - Chandra, Tara
PB - Trans Tech Publications Ltd
T2 - International Conference on Processing and Manufacturing of Advanced Materials Processing, Fabrication, Properties, Applications, THERMEC 2021
Y2 - 10 May 2021 through 14 May 2021
ER -