Development of muscle connection components for implantable power generation system ∗

Genta Sahara, Akihiro Yamada, Yusuke Inoue, Yasuyuki Shiraishi, Wataru Hijikata, Aoi Fukaya, Tomoyuki Yambe

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We have been developing an implantable power generation system that uses muscle contraction following electrical stimulation as a permanent power source for small implantable medical devices. However, if the muscle tissue is overloaded for power generation, the tissue may rupture or blood flow may be impaired. In this study, we developed a new muscle-connecting component that solves these problems. The new connection device has three rods attached to the muscle fibers, and the force exerted on the muscle fibers is converted from horizontal to vertical when the muscle contracts. We conducted simulations with a three-dimensional (3D) model, as well as pulse wave muscle measurements and in vivo tests using the actual muscle. The pulse wave in the connecting part and its downstream were optically measured from the muscle surface, and the blood flow was not obstructed. The 3D model simulations revealed that the distribution of stress was preferable compared with the case in which a rod was stuck vertically in the muscle. In the in vivo muscle tests, the metal rod and resin parts were attached to the muscle, and a load of up to approximately 9 N was applied to the connecting part. Consequently, the connecting part was stable and integrated with the muscle, and there was no damage in the muscle. Although no long-term or histological evaluations were conducted, the device may be useful because of the intramuscular power generation owing to the minimal load applied on the part connected with the muscle.

Original languageEnglish
Title of host publication43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7206-7210
Number of pages5
ISBN (Electronic)9781728111797
DOIs
Publication statusPublished - 2021
Event43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021 - Virtual, Online, Mexico
Duration: 2021 Nov 12021 Nov 5

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
Country/TerritoryMexico
CityVirtual, Online
Period21/11/121/11/5

Fingerprint

Dive into the research topics of 'Development of muscle connection components for implantable power generation system ∗'. Together they form a unique fingerprint.

Cite this