TY - JOUR
T1 - Device design consideration for Vth-controllable four-terminal double-gate metal-oxide-semiconductor field-effect transistor
AU - Masahara, Meishoku
AU - Liu, Yongxun
AU - Sakamoto, Kunihiro
AU - Endo, Kazuhiko
AU - Sekigawa, Toshihiro
AU - Matsukawa, Takashi
AU - Suzuki, Eiichi
PY - 2005/4
Y1 - 2005/4
N2 - The optimum device design for a threshold-voltage (Vth)- controllable four-terminal double-gate metal-oxide-semiconductor field-effect transistor (4T-DGFET) has been investigated by device simulation. The effects of the device parameters, e.g., workfunction (φm) of the double gate, gate oxide thickness (Tox), effective gate length (L eff), and the range of the second gate voltage (Vg2) on 4T-DGFET performance have been systematically examined. Simulation results show that lowering φms and increasing the second gate oxide thickness (Tox2) are preferable for the improvement of 4T-DGFET performance. The short channel effects (SCEs) for the 4T-DGFET have also been investigated in terms of Vth roll-off, degradation in subthreshold slope (5) and back-gate-effect factor (γ). It is shown that all the SCEs become severer with increasing Tox2. As a result, in the case of the ultrashort Leff regime, a thick Tox2 is not so preferable. In particular, under the limited Vg2 condition, a thin Tox2 is advantageous for enhancing the drive current due to the high Vth controllability and SCE immunity.
AB - The optimum device design for a threshold-voltage (Vth)- controllable four-terminal double-gate metal-oxide-semiconductor field-effect transistor (4T-DGFET) has been investigated by device simulation. The effects of the device parameters, e.g., workfunction (φm) of the double gate, gate oxide thickness (Tox), effective gate length (L eff), and the range of the second gate voltage (Vg2) on 4T-DGFET performance have been systematically examined. Simulation results show that lowering φms and increasing the second gate oxide thickness (Tox2) are preferable for the improvement of 4T-DGFET performance. The short channel effects (SCEs) for the 4T-DGFET have also been investigated in terms of Vth roll-off, degradation in subthreshold slope (5) and back-gate-effect factor (γ). It is shown that all the SCEs become severer with increasing Tox2. As a result, in the case of the ultrashort Leff regime, a thick Tox2 is not so preferable. In particular, under the limited Vg2 condition, a thin Tox2 is advantageous for enhancing the drive current due to the high Vth controllability and SCE immunity.
KW - Back-gate-effect factor
KW - Four-terminal double-gate metal-oxide-semiconduotor field-effect transistor (4T-DGFET)
KW - Gate workfunction
KW - Second gate oxide thickness
KW - Second gate voltage
KW - Short channel effect
KW - Threshold voltage controllability
UR - http://www.scopus.com/inward/record.url?scp=21244454443&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=21244454443&partnerID=8YFLogxK
U2 - 10.1143/JJAP.44.2351
DO - 10.1143/JJAP.44.2351
M3 - Article
AN - SCOPUS:21244454443
SN - 0021-4922
VL - 44
SP - 2351
EP - 2356
JO - Japanese Journal of Applied Physics
JF - Japanese Journal of Applied Physics
IS - 4 B
ER -