TY - JOUR
T1 - Dictyostelium differentiation-inducing factor-1 induces glucose transporter 1 translocation and promotes glucose uptake in mammalian cells
AU - Omata, Waka
AU - Shibata, Hiroshi
AU - Nagasawa, Masahiro
AU - Kojima, Itaru
AU - Kikuchi, Haruhisa
AU - Oshima, Yoshiteru
AU - Hosaka, Kohei
AU - Kubohara, Yuzuru
PY - 2007/7
Y1 - 2007/7
N2 - The differentiation-inducing factor-1 (DIF-1) is a signal molecule that induces stalk cell formation in the cellular slime mold Dictyostelium discoideum, while DIF-1 and its analogs have been shown to possess antiproliferative activity in vitro in mammalian tumor cells. In the present study, we investigated the effects of DIF-1 and its analogs on normal (nontransformed) mammalian cells. Without affecting the cell morphology and cell number, DIF-1 at micromolar levels dose-dependently promoted the glucose uptake in confluent 3T3-L1 fibroblasts, which was not inhibited with wortmannin or LY294002 (inhibitors for phosphatidylinositol 3-kinase). DIF-1 affected neither the expression level of glucose transporter 1 nor the activities of four key enzymes involved in glucose metabolism, such as hexokinase, fluctose 6-phosphate kinase, pyruvate kinase, and glucose 6-phosphate dehydrogenase. Most importantly, stimulation with DIF-1 was found to induce the translocation of glucose transporter 1 from intracellular vesicles to the plasma membranes in the cells. In differentiated 3T3-L1 adipocytes, DIF-1 induced the translocation of glucose trasporter 1 (but not of glucose transporter 4) and promoted glucose uptake, which was not inhibited with wortmannin. These results indicate that DIF-1 induces glucose transporter 1 translocation and thereby promotes glucose uptake, at least in part, via a inhibitors for phosphatidylinositol 3-kinase/Akt-independent pathway in mammalian cells. Furthermore, analogs of DIF-1 that possess stronger antitumor activity than DIF-1 were less effective in promoting glucose consumption, suggesting that the mechanism of the action of DIF-1 for stimulating glucose uptake should be different from that for suppressing tumor cell growth.
AB - The differentiation-inducing factor-1 (DIF-1) is a signal molecule that induces stalk cell formation in the cellular slime mold Dictyostelium discoideum, while DIF-1 and its analogs have been shown to possess antiproliferative activity in vitro in mammalian tumor cells. In the present study, we investigated the effects of DIF-1 and its analogs on normal (nontransformed) mammalian cells. Without affecting the cell morphology and cell number, DIF-1 at micromolar levels dose-dependently promoted the glucose uptake in confluent 3T3-L1 fibroblasts, which was not inhibited with wortmannin or LY294002 (inhibitors for phosphatidylinositol 3-kinase). DIF-1 affected neither the expression level of glucose transporter 1 nor the activities of four key enzymes involved in glucose metabolism, such as hexokinase, fluctose 6-phosphate kinase, pyruvate kinase, and glucose 6-phosphate dehydrogenase. Most importantly, stimulation with DIF-1 was found to induce the translocation of glucose transporter 1 from intracellular vesicles to the plasma membranes in the cells. In differentiated 3T3-L1 adipocytes, DIF-1 induced the translocation of glucose trasporter 1 (but not of glucose transporter 4) and promoted glucose uptake, which was not inhibited with wortmannin. These results indicate that DIF-1 induces glucose transporter 1 translocation and thereby promotes glucose uptake, at least in part, via a inhibitors for phosphatidylinositol 3-kinase/Akt-independent pathway in mammalian cells. Furthermore, analogs of DIF-1 that possess stronger antitumor activity than DIF-1 were less effective in promoting glucose consumption, suggesting that the mechanism of the action of DIF-1 for stimulating glucose uptake should be different from that for suppressing tumor cell growth.
KW - Antitumor agent
KW - DIF-1
KW - Dictyostelium
KW - GLUT1
KW - Glucose uptake
UR - http://www.scopus.com/inward/record.url?scp=34347401616&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34347401616&partnerID=8YFLogxK
U2 - 10.1111/j.1742-4658.2007.05872.x
DO - 10.1111/j.1742-4658.2007.05872.x
M3 - Article
C2 - 17553062
AN - SCOPUS:34347401616
SN - 1742-464X
VL - 274
SP - 3392
EP - 3404
JO - FEBS Journal
JF - FEBS Journal
IS - 13
ER -