TY - JOUR
T1 - Differential gene expression profile of human neutrophils cultured with Plasmodium falciparum-parasitized erythrocytes
AU - Terkawi, Mohamad Alaa
AU - Takano, Ryo
AU - Kato, Kentaro
N1 - Funding Information:
This work was supported by grants-in-aids for young scientists (Wakate B, 15K20840); by grants-in-aids for exploratory scientific research on innovative areas (3308 and 3407) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and for research on global health issues from the Ministry of Health, Labour and Welfare, Japan; by the Bio-oriented Technology Research Advancement Institution (BRAIN); by the Kanae Foundation for the Promotion of Medical Science; and by the Program to Disseminate Tenure Tracking System from the Japan Science and Technology Agency (JST). The authors thank Professor Takafumi Tsuboi (Ehime University) for providing the specific antibody to PfEXP2 for detecting human malarial parasites.
Publisher Copyright:
Copyright © 2018 Mohamad Alaa Terkawi et al.
PY - 2018
Y1 - 2018
N2 - Neutrophils (PMNs) are the most abundant cellular component of our innate immune system, where they play central roles in the pathogenesis of and resistance to a broad range of diseases. However, their roles in malarial infection remain poorly understood. Therefore, we examined the transcriptional gene profile of human PMNs in response to Plasmodium falciparum-parasitized erythrocytes (iRBCs) by using oligonucleotide microarrays. Results revealed that PMNs induced a broad and vigorous set of changes in gene expression in response to malarial parasites, represented by 118 upregulated and 216 downregulated genes. The transcriptional response was characterized by the upregulation of numerous genes encoding multiple surface receptors, proteins involved in signal transduction pathways, and defense response proteins. This response included a number of genes which are known to be involved in the pathogenesis of malaria and other inflammatory diseases. Gene enrichment analysis suggested that the biological pathways involved in the PMN responses to the iRBCs included insulin receptor, Jak-STAT signaling pathway, mitogen-activated protein kinase (MAPK), and interleukin and interferon-gamma (IFN-γ) signaling pathways. The current study provides fundamental knowledge on the molecular responses of neutrophils to malarial parasites, which may aid in the discovery of novel therapeutic interventions.
AB - Neutrophils (PMNs) are the most abundant cellular component of our innate immune system, where they play central roles in the pathogenesis of and resistance to a broad range of diseases. However, their roles in malarial infection remain poorly understood. Therefore, we examined the transcriptional gene profile of human PMNs in response to Plasmodium falciparum-parasitized erythrocytes (iRBCs) by using oligonucleotide microarrays. Results revealed that PMNs induced a broad and vigorous set of changes in gene expression in response to malarial parasites, represented by 118 upregulated and 216 downregulated genes. The transcriptional response was characterized by the upregulation of numerous genes encoding multiple surface receptors, proteins involved in signal transduction pathways, and defense response proteins. This response included a number of genes which are known to be involved in the pathogenesis of malaria and other inflammatory diseases. Gene enrichment analysis suggested that the biological pathways involved in the PMN responses to the iRBCs included insulin receptor, Jak-STAT signaling pathway, mitogen-activated protein kinase (MAPK), and interleukin and interferon-gamma (IFN-γ) signaling pathways. The current study provides fundamental knowledge on the molecular responses of neutrophils to malarial parasites, which may aid in the discovery of novel therapeutic interventions.
UR - http://www.scopus.com/inward/record.url?scp=85056253796&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056253796&partnerID=8YFLogxK
U2 - 10.1155/2018/6709424
DO - 10.1155/2018/6709424
M3 - Article
C2 - 30069491
AN - SCOPUS:85056253796
SN - 2314-8861
VL - 2018
JO - Journal of Immunology Research
JF - Journal of Immunology Research
M1 - 6709424
ER -