TY - JOUR

T1 - Diffraction radiation from a charged particle moving through a rectangular hole in a rectangular screen

AU - Karataev, P.

AU - Araki, S.

AU - Hamatsu, R.

AU - Hayano, H.

AU - Muto, T.

AU - Naumenko, G.

AU - Potylitsyn, A.

AU - Terunuma, N.

AU - Urakawa, J.

PY - 2005/1

Y1 - 2005/1

N2 - We developed a new model for calculating diffraction radiation (DR) from an electron moving through a rectangular hole in a rectangular screen. The calculations show that short wavelength DR is very sensitive to the beam size. For example, optical DR (ODR) could be used to measure the beam size as small as 10 μm. Moreover, splitting two polarization components it becomes possible to measure vertical and horizontal beam sizes independently. We have calculated the DR spectra and compared them with TR ones for a finite size target. It is shown that when the DR wavelength is comparable with or longer than the hole size, the photon yield is mostly determined by the outer target dimensions. It means that in case transversal beam dimensions smaller than the observation wavelength the coherent DR could be used for non-invasive bunch length measurements with the same accuracy as the coherent TR techniques. However, the outer target dimensions must be taken into account because the finite target size causes a significant intensity suppression in the long wavelength spectral range as well as distortion of the coherent spectrum.

AB - We developed a new model for calculating diffraction radiation (DR) from an electron moving through a rectangular hole in a rectangular screen. The calculations show that short wavelength DR is very sensitive to the beam size. For example, optical DR (ODR) could be used to measure the beam size as small as 10 μm. Moreover, splitting two polarization components it becomes possible to measure vertical and horizontal beam sizes independently. We have calculated the DR spectra and compared them with TR ones for a finite size target. It is shown that when the DR wavelength is comparable with or longer than the hole size, the photon yield is mostly determined by the outer target dimensions. It means that in case transversal beam dimensions smaller than the observation wavelength the coherent DR could be used for non-invasive bunch length measurements with the same accuracy as the coherent TR techniques. However, the outer target dimensions must be taken into account because the finite target size causes a significant intensity suppression in the long wavelength spectral range as well as distortion of the coherent spectrum.

KW - Diffraction radiation

KW - Electron beam diagnostics

KW - Transition radiation

UR - http://www.scopus.com/inward/record.url?scp=9944264979&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=9944264979&partnerID=8YFLogxK

U2 - 10.1016/j.nimb.2004.03.014

DO - 10.1016/j.nimb.2004.03.014

M3 - Conference article

AN - SCOPUS:9944264979

SN - 0168-583X

VL - 227

SP - 198

EP - 208

JO - Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

JF - Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

IS - 1-2

T2 - Radiation from Relativistic Electrons in Periodic Structures

Y2 - 8 September 2003 through 11 September 2003

ER -