Diffusivities of tris(2,2′-bipyridyl)ruthenium inside silica-nanochannels modified with alkylsilanes

Akira Yamaguchi, Takashi Yoda, Shintaro Suzuki, Kotaro Morita, Norio Teramae

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)


The apparent diffusion coefficients of tris(2,2′-bipyridyl)ruthenium ([Ru(bpy3)]2+) are estimated in silica-nanochannels which are assembled inside columnar alumina pores in an anodic alumina membrane, and are modified with alkylsilanes such as trimethylchlorosilane (C1), butyldimethylchlorosilane (C4), and dodecyldimethylchlorosilane (C12). The estimation is performed by observing the lag-time, which is defined as the time required for [Ru(bpy)3]2+ to diffuse through alkylsilane-modified silica-nanochannels in the alumina membrane. When ethanol is used as a solvent, the apparent diffusion coefficients of [Ru(bpy) 3]2+ are estimated as 2.1 × 10-10 and 3.2 × 10-10 cm2 s-1 in the C1- and C4-modified silica-nanochannels, respectively. These values are about 10 4 times smaller than that obtained in bulk ethanol. Based on the experimental results on the solvent dependency of the lag-time, the hydrogen-bonding interaction between ethanol molecules is considered to be stronger in the C1- and C4-modified silica-nanochannels than in bulk ethanol, and the hydrogen-bonding interaction plays a critical role for the slow diffusivity in those nanochannels. In contrast, the apparent diffusion coefficient in the C12-modified silica-nanochannel is at least two orders of magnitude larger than those in the C1- and C4-modified silica-nanochannels. This relatively fast diffusion is most likely explained by the presence of a long alkyl chain of C12, which reduces a hindrance effect that is originates in the hydrogen-bonding interaction. 2006

Original languageEnglish
Pages (from-to)1501-1507
Number of pages7
JournalAnalytical Sciences
Issue number12
Publication statusPublished - 2006 Dec

ASJC Scopus subject areas

  • Analytical Chemistry


Dive into the research topics of 'Diffusivities of tris(2,2′-bipyridyl)ruthenium inside silica-nanochannels modified with alkylsilanes'. Together they form a unique fingerprint.

Cite this