Distribution patterns of eigenvalues of laminar pipe flow. (Classification of modes bases on dynamics of the system).

T. Ito, Y. Suematsu, T. Hayase, K. Hase

Research output: Contribution to journalArticlepeer-review

Abstract

The aim of this study was to clarify the structure and dynamic behaviour of the linear system (Navier-Stokes equation). A numerical method for calculating the eigenvalues is proposed together with a measure of accuracy. The distribution of eigenvalues and the mode of perturbations for the Poiseuille pipe flow are discussed. The wave perturbations for various azimuthal and axial wave numbers were investigated with a fixed Reynolds number. It is shown that the distribution of eigenvalues in a complex phase velocity plane assumes a tree like shape. The mode of perturbations is divided into three classes: slow, fast and mean modes by the axial phase velocity, or wall, centre and neutral modes by the radial distribution of the magnitude of the eigenfunction. For each mode, the location of the corresponding eigenvalue in the complex phase velocity plane and the dependence of the eigenvalue on the original linear dynamic system was clarified.

Original languageEnglish
Pages (from-to)632-638
Number of pages7
JournalJSME INT. J. SER. II
Volume31
Issue number4 , Nov. 1988
DOIs
Publication statusPublished - 1988
Externally publishedYes

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint

Dive into the research topics of 'Distribution patterns of eigenvalues of laminar pipe flow. (Classification of modes bases on dynamics of the system).'. Together they form a unique fingerprint.

Cite this