TY - JOUR
T1 - Diversity of ATM gene variants
T2 - a population-based genome data analysis for precision medicine
AU - Fukunaga, Hisanori
AU - Taki, Yasuyuki
AU - Prise, Kevin M.
N1 - Funding Information:
HF was founded by fellowships and research grants from the Marubun Research Promotion Foundation (FY2017–2018), the Japan Radiation Effects Association (FY2018). This work was supported by a research grant of the Japan Radiological Society from Bayer Yakuhin to HF.
PY - 2019/8/23
Y1 - 2019/8/23
N2 - BACKGROUND: Ataxia-telangiectasia (AT) is a rare autosomal recessive disorder that causes deficiency or dysfunction of the ataxia-telangiectasia mutated (ATM) protein. Not only AT patients, but also certain ATM heterozygous mutation carriers show a significantly reduced life expectancy due to cancer and ischemic heart disease; in particular, female carriers having particular alleles have an increased risk of breast cancer. The frequency of such risk heterozygotes at a population level remains to be fully determined, and evidence-based preventive medical guidelines have not yet been established. METHODS: Using the 3.5KJPNv2 allele frequency panel of Japanese Multi Omics Reference Panel v201902, which shows single-nucleotide variant (SNV) and insertion/deletion (INDEL) allele frequencies from 3552 Japanese healthy individuals, we investigated the diversity of ATM gene variants. RESULTS: We detected 2845 (2370 SNV and 475 INDEL) variants in the ATM gene, including 1338 (1160 SNV and 178 INDEL) novel variants. Also, we found a stop-gained SNV (NC_000008.11:g.108115650G > A (p.Trp266*)) and a disruptive-inframe-deletion (NC_000008.11:g. 108181014AAGAAAAGTATGGATGATCAAG/A (p.Ala1945_Phe1952delinsVal) and two frameshift INDELs (NC_000008.11:g.108119714CAA/C (p.Glu376fs) and NC_000008.11:g.108203577CTTATA/C (p.Ile2629fs)), which would be novel variants predicted to lead to loss of ATM functionality. CONCLUSION: The combination of population-based biobanking and human genomics provided a novel insight of diversity of ATM gene variants at a population level. For the advancement of precision medicine, such approach will be useful to predict novel pathogenic/likely pathogenic variants in the ATM gene and to establish preventive medical guidelines for certain ATM heterozygotes pertaining to their risk of particular diseases.
AB - BACKGROUND: Ataxia-telangiectasia (AT) is a rare autosomal recessive disorder that causes deficiency or dysfunction of the ataxia-telangiectasia mutated (ATM) protein. Not only AT patients, but also certain ATM heterozygous mutation carriers show a significantly reduced life expectancy due to cancer and ischemic heart disease; in particular, female carriers having particular alleles have an increased risk of breast cancer. The frequency of such risk heterozygotes at a population level remains to be fully determined, and evidence-based preventive medical guidelines have not yet been established. METHODS: Using the 3.5KJPNv2 allele frequency panel of Japanese Multi Omics Reference Panel v201902, which shows single-nucleotide variant (SNV) and insertion/deletion (INDEL) allele frequencies from 3552 Japanese healthy individuals, we investigated the diversity of ATM gene variants. RESULTS: We detected 2845 (2370 SNV and 475 INDEL) variants in the ATM gene, including 1338 (1160 SNV and 178 INDEL) novel variants. Also, we found a stop-gained SNV (NC_000008.11:g.108115650G > A (p.Trp266*)) and a disruptive-inframe-deletion (NC_000008.11:g. 108181014AAGAAAAGTATGGATGATCAAG/A (p.Ala1945_Phe1952delinsVal) and two frameshift INDELs (NC_000008.11:g.108119714CAA/C (p.Glu376fs) and NC_000008.11:g.108203577CTTATA/C (p.Ile2629fs)), which would be novel variants predicted to lead to loss of ATM functionality. CONCLUSION: The combination of population-based biobanking and human genomics provided a novel insight of diversity of ATM gene variants at a population level. For the advancement of precision medicine, such approach will be useful to predict novel pathogenic/likely pathogenic variants in the ATM gene and to establish preventive medical guidelines for certain ATM heterozygotes pertaining to their risk of particular diseases.
KW - Ataxia-telangiectasia mutated
KW - Heterozygotes
KW - Population-based biobank
KW - Precision medicine
KW - Whole-genome reference panel
UR - http://www.scopus.com/inward/record.url?scp=85071459218&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071459218&partnerID=8YFLogxK
U2 - 10.1186/s40246-019-0234-2
DO - 10.1186/s40246-019-0234-2
M3 - Letter
C2 - 31443742
AN - SCOPUS:85071459218
SN - 1473-9542
VL - 13
SP - 38
JO - Human Genomics
JF - Human Genomics
IS - 1
ER -