Abstract
Objective: Early-onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH)/ataxia with oculomotor apraxia type 1 (AOA1) is an autosomal recessive form of cerebellar ataxia. The causative protein for EAOH/AOA1, aprataxin (APTX), interacts with X-ray repair cross-complementing 1 (XRCC1), a scaffold DNA repair protein for single-strand breaks (SSBs). The goal of this study was to prove the functional involvement of APTX in SSB repair (SSBR). Methods: We visualized the SSBR process with a recently developed laser irradiation system that allows real-time observation of SSBR proteins and with a local ultraviolet-irradiation system using a XPA-UVDE cell line that repairs DNA lesions exclusively via SSBR. APTX was knocked down using small interference RNA in the cells. Oxidative stress-induced DNA damage and cell death were assessed in EAOH fibroblasts and cerebellum. Results: Our systems showed the XRCC1-dependent recruitment of APTX to SSBs. SSBR was impaired in APTX-knocked-down cells. Oxidative stress in EAOH fibroblasts readily induced SSBs and cell death, which were blocked by antioxidants. Accumulated oxidative DNA damage was confirmed in EAOH cerebellum. Interpretation: This study provides the first direct evidence for the functional involvement of APTX in SSBR and in vivo DNA damage in EAOH/AOA1, and suggests a benefit of antioxidant treatment.
Original language | English |
---|---|
Pages (from-to) | 162-174 |
Number of pages | 13 |
Journal | Annals of Neurology |
Volume | 61 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2007 Feb |
ASJC Scopus subject areas
- Neurology
- Clinical Neurology