TY - JOUR
T1 - Dodecagonal tiling in mesoporous silica
AU - Xiao, Changhong
AU - Fujita, Nobuhisa
AU - Miyasaka, Keiichi
AU - Sakamoto, Yasuhiro
AU - Terasaki, Osamu
N1 - Funding Information:
Acknowledgements We thank K. Niizeki, T. Dotera, A. E. Garcia-Bennett, S. Che and C.Gao fordiscussions,O.M.YaghiandM.O’Keeffe forcriticalreadingofthe manuscript, and J. Shen for encouragement and support. This work was supported by the Swedish Research Council (VR), the Japan Science and Technology Agency (JST) and Berzelii EXSELENT. SEM and TEM studies were performed at the Electron Microscopy Center (EMC) at Stockholm University, which is supported by the Knut and Alice Wallenberg Foundation. Support from the WCU programme, Korea (R-31-2008-000-10055-0; K.M. and O.T.), Grants-in-Aid for Young Scientists (B) of JSPS (no. 23710132; Y.S.), and Special Coordination Funds for Promoting Science and Technology of MEXT, Japan (Y.S.) is also acknowledged.
PY - 2012/7/19
Y1 - 2012/7/19
N2 - Recent advances in the fabrication of quasicrystals in soft matter systems have increased the length scales for quasicrystals into the mesoscale range (20 to 500 ångströms). Thus far, dendritic liquid crystals, ABC-star polymers, colloids and inorganic nanoparticles have been reported to yield quasicrystals. These quasicrystals offer larger length scales than intermetallic quasicrystals (a few ångströms), thus potentially leading to optical applications through the realization of a complete photonic bandgap induced via multiple scattering of light waves in virtually all directions. However, the materials remain far from structurally ideal, in contrast to their intermetallic counterparts, and fine control over the structure through a self-organization process has yet to be attained. Here we use the well-established self-assembly of surfactant micelles to produce a new class of mesoporous silicas, which exhibit 12-fold (dodecagonal) symmetry in both electron diffraction and morphology. Each particle reveals, in the 12-fold cross-section, an analogue of dodecagonal quasicrystals in the centre surrounded by 12 fans of crystalline domains in the peripheral part. The quasicrystallinity has been verified by selected-area electron diffraction and quantitative phason strain analyses on transmission electron microscope images obtained from the central region. We argue that the structure forms through a non-equilibrium growth process, wherein the competition between different micellar configurations has a central role in tuning the structure. A simple theoretical model successfully reproduces the observed features and thus establishes a link between the formation process and the resulting structure.
AB - Recent advances in the fabrication of quasicrystals in soft matter systems have increased the length scales for quasicrystals into the mesoscale range (20 to 500 ångströms). Thus far, dendritic liquid crystals, ABC-star polymers, colloids and inorganic nanoparticles have been reported to yield quasicrystals. These quasicrystals offer larger length scales than intermetallic quasicrystals (a few ångströms), thus potentially leading to optical applications through the realization of a complete photonic bandgap induced via multiple scattering of light waves in virtually all directions. However, the materials remain far from structurally ideal, in contrast to their intermetallic counterparts, and fine control over the structure through a self-organization process has yet to be attained. Here we use the well-established self-assembly of surfactant micelles to produce a new class of mesoporous silicas, which exhibit 12-fold (dodecagonal) symmetry in both electron diffraction and morphology. Each particle reveals, in the 12-fold cross-section, an analogue of dodecagonal quasicrystals in the centre surrounded by 12 fans of crystalline domains in the peripheral part. The quasicrystallinity has been verified by selected-area electron diffraction and quantitative phason strain analyses on transmission electron microscope images obtained from the central region. We argue that the structure forms through a non-equilibrium growth process, wherein the competition between different micellar configurations has a central role in tuning the structure. A simple theoretical model successfully reproduces the observed features and thus establishes a link between the formation process and the resulting structure.
UR - http://www.scopus.com/inward/record.url?scp=84863955873&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863955873&partnerID=8YFLogxK
U2 - 10.1038/nature11230
DO - 10.1038/nature11230
M3 - Article
AN - SCOPUS:84863955873
SN - 0028-0836
VL - 487
SP - 349
EP - 353
JO - Nature
JF - Nature
IS - 7407
ER -