Double prenylation of SNARE protein Ykt6 is required for lysosomal hydrolase trafficking

Natsumi Sakata, Ryutaro Shirakawa, Kota Goto, Duc Anh Trinh, Hisanori Horiuchi

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


Ykt6 is an evolutionarily conserved SNARE protein regulating Golgi membrane fusion and other diverse membrane trafficking pathways. Unlike most SNARE proteins, Ykt6 lacks a transmembrane domain but instead has a tandem cysteine motif at the C-terminus. Recently, we have demonstrated that Ykt6 undergoes double prenylation at the C-terminal two cysteines first by farnesyltransferase and then by a newly identified protein prenyltransferase named geranylgeranyltransferase type-III (GGTase-III). GGTase-III consists of a novel α subunit prenyltransferase alpha subunit repeat containing 1 (PTAR1) and the β subunit of Rab geranylgeranyltransferase. PTAR1 knockout (KO) cells, where Ykt6 is singly prenylated with a farnesyl moiety, exhibit structural and functional abnormalities in the Golgi apparatus with delayed intra-Golgi trafficking and impaired protein glycosylation. It remains unclear whether the second prenylation of Ykt6 is required for proper trafficking of lysosomal hydrolases from Golgi to lysosomes. Here, we show that lysosomal hydrolases, cathepsin D and β-hexosaminidase, were missorted at the trans-Golgi network and secreted into the extracellular space in PTAR1 KO cells. Moreover, maturation of these hydrolases was disturbed. LC3B, an autophagy marker, was accumulated in PTAR1 KO cells, suggesting defects in cellular degradation pathways. Thus, doubly prenylated Ykt6, but not singly prenylated Ykt6, is critical for the efficient sorting and trafficking of acid hydrolases to lysosomes.

Original languageEnglish
Pages (from-to)363-370
Number of pages8
JournalJournal of Biochemistry
Issue number3
Publication statusPublished - 2021 Mar 1


  • Golgi apparatus
  • lysosomal hydrolase
  • protein prenylation
  • Ykt6


Dive into the research topics of 'Double prenylation of SNARE protein Ykt6 is required for lysosomal hydrolase trafficking'. Together they form a unique fingerprint.

Cite this