TY - JOUR
T1 - Downstream genes of Pax6 revealed by comprehensive transcriptome profiling in the developing rat hindbrain
AU - Numayama-Tsuruta, Keiko
AU - Arai, Yoko
AU - Takahashi, Masanori
AU - Sasaki-Hoshino, Makiko
AU - Funatsu, Nobuo
AU - Nakamura, Shun
AU - Osumi, Noriko
N1 - Funding Information:
We thank Dr. Veronica van Heyningen for providing the anti-Pax6 antibody, Mses. Michi Otonari, Hisako Yusa and Sayaka Makino for maintenance of the rSey2 colony and Dr. Yoshio Wakamatsu and Ms. Yoko Matsumoto for their helpful advice. We also thank all other members of the Osumi laboratory for their valuable comments and discussion. This work was supported by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology in Priority Areas: “Integrated genome” (#16011201 to N.O.), “A nuclear system to DECODE” (#17054003 to M.T.) and “Molecular Brain Science” (#17024001 to N.O.).
PY - 2010
Y1 - 2010
N2 - Background. The transcription factor Pax6 is essential for the development of the central nervous system and it exerts its multiple functions by regulating the expression of downstream target molecules. To screen for genes downstream of Pax6, we performed comprehensive transcriptome profiling analyses in the early hindbrain of Pax6 homozygous mutant and wild-type rats using microarrays. Results. Comparison of quadruplicate microarray experiments using two computational methods allowed us to identify differentially expressed genes that have relatively small fold changes or low expression levels. Gene ontology analyses of the differentially expressed molecules demonstrated that Pax6 is involved in various signal transduction pathways where it regulates the expression of many receptors, signaling molecules, transporters and transcription factors. The up- or down-regulation of these genes was further confirmed by quantitative RT-PCR. In situ staining of Fabp7, Dbx1, Unc5h1 and Cyp26b1 mRNAs showed that expression of these transcripts not only overlapped with that of Pax6 in the hindbrain of wild-type and Pax6 heterozygous mutants, but also was clearly reduced in the hindbrain of the Pax6 homozygous mutant. In addition, the Pax6 homozygous mutant hindbrain showed that Cyp26b1 expression was lacked in the dorsal and ventrolateral regions of rhombomeres 5 and 6, and that the size of rhombomere 5 expanded rostrocaudally. Conclusions. These results indicate that Unc5h1 and Cyp26b1 are novel candidates for target genes transactivated by Pax6. Furthermore, our results suggest the interesting possibility that Pax6 regulates anterior-posterior patterning of the hindbrain via activation of Cyp26b1, an enzyme that metabolizes retinoic acid.
AB - Background. The transcription factor Pax6 is essential for the development of the central nervous system and it exerts its multiple functions by regulating the expression of downstream target molecules. To screen for genes downstream of Pax6, we performed comprehensive transcriptome profiling analyses in the early hindbrain of Pax6 homozygous mutant and wild-type rats using microarrays. Results. Comparison of quadruplicate microarray experiments using two computational methods allowed us to identify differentially expressed genes that have relatively small fold changes or low expression levels. Gene ontology analyses of the differentially expressed molecules demonstrated that Pax6 is involved in various signal transduction pathways where it regulates the expression of many receptors, signaling molecules, transporters and transcription factors. The up- or down-regulation of these genes was further confirmed by quantitative RT-PCR. In situ staining of Fabp7, Dbx1, Unc5h1 and Cyp26b1 mRNAs showed that expression of these transcripts not only overlapped with that of Pax6 in the hindbrain of wild-type and Pax6 heterozygous mutants, but also was clearly reduced in the hindbrain of the Pax6 homozygous mutant. In addition, the Pax6 homozygous mutant hindbrain showed that Cyp26b1 expression was lacked in the dorsal and ventrolateral regions of rhombomeres 5 and 6, and that the size of rhombomere 5 expanded rostrocaudally. Conclusions. These results indicate that Unc5h1 and Cyp26b1 are novel candidates for target genes transactivated by Pax6. Furthermore, our results suggest the interesting possibility that Pax6 regulates anterior-posterior patterning of the hindbrain via activation of Cyp26b1, an enzyme that metabolizes retinoic acid.
UR - http://www.scopus.com/inward/record.url?scp=76449087786&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=76449087786&partnerID=8YFLogxK
U2 - 10.1186/1471-213X-10-6
DO - 10.1186/1471-213X-10-6
M3 - Article
C2 - 20082710
AN - SCOPUS:76449087786
SN - 1471-213X
VL - 10
JO - BMC Developmental Biology
JF - BMC Developmental Biology
M1 - 6
ER -