TY - JOUR
T1 - DPP-4 inhibitor impedes lipopolysaccharide-induced osteoclast formation and bone resorption in vivo
AU - Ishida, Masahiko
AU - Shen, Wei Ren
AU - Kimura, Keisuke
AU - Kishikawa, Akiko
AU - Shima, Kazuhiro
AU - Ogawa, Saika
AU - Qi, Jiawei
AU - Ohori, Fumitoshi
AU - Noguchi, Takahiro
AU - Marahleh, Aseel
AU - Kitaura, Hideki
N1 - Funding Information:
This work was supported in part by a JSPS KAKENHI grant from the Japan Society for the Promotion of Science (No. 16K11776 to H. K., No. 17K17306 to K. S., No. 16K20637 to K. K., No. 16K20636 to M. S.). The funding agency did not influence the study design; the collection, analysis and interpretation of data; the writing of the report; or the decision to submit the paper for publication.
Publisher Copyright:
© 2018 Elsevier Masson SAS
PY - 2019/1
Y1 - 2019/1
N2 - Objectives: Dipeptidyl peptidase 4 (DPP-4) inhibition is a new therapeutic strategy for type 2 diabetic patients. DPP-4 has been reported to enhance inflammation. However, the effect of DPP-4 inhibition on inflammation remains unknown. Lipopolysaccharide (LPS) is a strong inducer of inflammation and osteoclast formation. In this study, we investigated in vivo effects of DPP-4 inhibition on LPS-induced osteoclast formation and bone resorption, as well as in vitro effects of DPP-4 inhibition on RANKL-induced osteoclastogenesis and TNF-α-induced osteoclastogenesis. Methods: LPS with or without a DPP-4 inhibitor was subcutaneously injected into mouse calvaria for 5 days. Histological sections of calvaria were stained for tartrate-resistant acid phosphatase, and osteoclast numbers were determined. The ratio of calvaria bone resorption was evaluated via microfocal computed tomography reconstruction images. Results: Osteoclast number and bone resorption were significantly lower in mice that underwent LPS and DPP-4 inhibitor co-administration than in those that underwent LPS administration alone. Moreover, RANKL, TNF-α and M-CSF expression was reduced in the LPS and DPP-4 inhibitor co-administration group. In vitro, there were no direct effects of DPP-4 inhibitor or DPP-4 on RANKL- and TNF-α-induced osteoclastogenesis, or on LPS-induced RANKL expression in stromal cells. Nevertheless, macrophages from LPS and DPP-4 inhibitor co-administered mice exhibited lower TNF-α expression than macrophages from LPS-only mice. Notably, TNF-α expression was not reduced in LPS and DPP-4 inhibitor co-treated macrophages in vitro, compared with macrophages treated with LPS alone.
AB - Objectives: Dipeptidyl peptidase 4 (DPP-4) inhibition is a new therapeutic strategy for type 2 diabetic patients. DPP-4 has been reported to enhance inflammation. However, the effect of DPP-4 inhibition on inflammation remains unknown. Lipopolysaccharide (LPS) is a strong inducer of inflammation and osteoclast formation. In this study, we investigated in vivo effects of DPP-4 inhibition on LPS-induced osteoclast formation and bone resorption, as well as in vitro effects of DPP-4 inhibition on RANKL-induced osteoclastogenesis and TNF-α-induced osteoclastogenesis. Methods: LPS with or without a DPP-4 inhibitor was subcutaneously injected into mouse calvaria for 5 days. Histological sections of calvaria were stained for tartrate-resistant acid phosphatase, and osteoclast numbers were determined. The ratio of calvaria bone resorption was evaluated via microfocal computed tomography reconstruction images. Results: Osteoclast number and bone resorption were significantly lower in mice that underwent LPS and DPP-4 inhibitor co-administration than in those that underwent LPS administration alone. Moreover, RANKL, TNF-α and M-CSF expression was reduced in the LPS and DPP-4 inhibitor co-administration group. In vitro, there were no direct effects of DPP-4 inhibitor or DPP-4 on RANKL- and TNF-α-induced osteoclastogenesis, or on LPS-induced RANKL expression in stromal cells. Nevertheless, macrophages from LPS and DPP-4 inhibitor co-administered mice exhibited lower TNF-α expression than macrophages from LPS-only mice. Notably, TNF-α expression was not reduced in LPS and DPP-4 inhibitor co-treated macrophages in vitro, compared with macrophages treated with LPS alone.
KW - Diabetes
KW - DPP-4 inhibitor
KW - LPS
KW - Osteoclast
UR - http://www.scopus.com/inward/record.url?scp=85055915181&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055915181&partnerID=8YFLogxK
U2 - 10.1016/j.biopha.2018.10.052
DO - 10.1016/j.biopha.2018.10.052
M3 - Article
C2 - 30396082
AN - SCOPUS:85055915181
SN - 0753-3322
VL - 109
SP - 242
EP - 253
JO - Biomedicine and Pharmacotherapy
JF - Biomedicine and Pharmacotherapy
ER -