Duality analysis on random planar lattices

Masayuki Ohzeki, Keisuke Fujii

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


The conventional duality analysis is employed to identify a location of a critical point on a uniform lattice without any disorder in its structure. In the present study, we deal with the random planar lattice, which consists of the randomized structure based on the square lattice. We introduce the uniformly random modification by the bond dilution and contraction on a part of the unit square. The random planar lattice includes the triangular and hexagonal lattices in extreme cases of a parameter to control the structure. A modern duality analysis fashion with real-space renormalization is found to be available for estimating the location of the critical points with a wide range of the randomness parameter. As a simple test bed, we demonstrate that our method indeed gives several critical points for the cases of the Ising and Potts models and the bond-percolation thresholds on the random planar lattice. Our method leads to not only such an extension of the duality analyses on the classical statistical mechanics but also a fascinating result associated with optimal error thresholds for a class of quantum error correction code, the surface code on the random planar lattice, which is known as a skillful technique to protect the quantum state.

Original languageEnglish
Article number051121
JournalPhysical Review E
Issue number5
Publication statusPublished - 2012 Nov 19


Dive into the research topics of 'Duality analysis on random planar lattices'. Together they form a unique fingerprint.

Cite this