TY - JOUR
T1 - Effect of axial ligation or π-π-type interactions on photochemical charge stabilization in "two-point" bound supramolecular porphyrin-fullerene conjugates
AU - D'Souza, Francis
AU - Chitta, Raghu
AU - Gadde, Suresh
AU - Zandler, Melvin E.
AU - McCarty, Amy L.
AU - Sandanayaka, Atula S.D.
AU - Araki, Yasuyaki
AU - Ito, Osamu
PY - 2005/7/18
Y1 - 2005/7/18
N2 - Two types of structurally well-defined, self-assembled zinc porphyrin-fullerene conjugates were formed by "two-point" binding strategies to probe the effect of axial ligation or π-π-type interactions on the photochemical charge stabilization in the supramolecular dyads. To achieve this, meso-tetraphenylporphyrin was functionalized to possess one or four [18]crown-6 moieties at different locations on the porphyrin macrocycle while fullerene was functionalized to possess an alkyl ammonium cation, and a pyridine or phenyl entities. As a result of the crown ether-ammonium cation complexation, and zinc-pyridine coordination or π-π-type interactions, stable zinc porphyrin-fullerene conjugates with defined distance and orientation were formed. Evidence for the zinc-pyridine complexation or π-π type interactions was obtained from the spectral and computational studies. Steady-state and time-resolved emission studies revealed efficient quenching of the zinc-porphyrin singlet excited state in these dyads, and the measured rates of charge separation, kCS were found to be slightly better in the case of the dyads held by axial coordination and crown ether-cation complexation. Nanosecond transient absorption studies provided evidence for the electron transfer reactions, and these studies also revealed charge stabilization in these dyads. The lifetimes of the radical ion pairs were found to depend upon the type of porphyrins utilized to form the dyads, that is, porphyrin possessing the crown ether moiety at the ortho position of one of the phenyl rings yielded prolonged charge stabilized states. Addition of pyridine to the supramolecular dyads eliminated the zinc-pyridine coordination or π-π-type interactions of the "two-point" bound systems due to the formation of a new zinc-pyridine axial bond thus giving a unique opportunity to probe the effect of axial coordination or π-π interactions on k CS and kCR. Under these conditions, the measured electron transfer rates revealed faster kCS and slower kCR as compared to those obtained in the absence of added pyridine. The evaluated lifetimes of the radical ion-pairs were found to be hundreds of nanoseconds and were longer in the presence of pyridine.
AB - Two types of structurally well-defined, self-assembled zinc porphyrin-fullerene conjugates were formed by "two-point" binding strategies to probe the effect of axial ligation or π-π-type interactions on the photochemical charge stabilization in the supramolecular dyads. To achieve this, meso-tetraphenylporphyrin was functionalized to possess one or four [18]crown-6 moieties at different locations on the porphyrin macrocycle while fullerene was functionalized to possess an alkyl ammonium cation, and a pyridine or phenyl entities. As a result of the crown ether-ammonium cation complexation, and zinc-pyridine coordination or π-π-type interactions, stable zinc porphyrin-fullerene conjugates with defined distance and orientation were formed. Evidence for the zinc-pyridine complexation or π-π type interactions was obtained from the spectral and computational studies. Steady-state and time-resolved emission studies revealed efficient quenching of the zinc-porphyrin singlet excited state in these dyads, and the measured rates of charge separation, kCS were found to be slightly better in the case of the dyads held by axial coordination and crown ether-cation complexation. Nanosecond transient absorption studies provided evidence for the electron transfer reactions, and these studies also revealed charge stabilization in these dyads. The lifetimes of the radical ion pairs were found to depend upon the type of porphyrins utilized to form the dyads, that is, porphyrin possessing the crown ether moiety at the ortho position of one of the phenyl rings yielded prolonged charge stabilized states. Addition of pyridine to the supramolecular dyads eliminated the zinc-pyridine coordination or π-π-type interactions of the "two-point" bound systems due to the formation of a new zinc-pyridine axial bond thus giving a unique opportunity to probe the effect of axial coordination or π-π interactions on k CS and kCR. Under these conditions, the measured electron transfer rates revealed faster kCS and slower kCR as compared to those obtained in the absence of added pyridine. The evaluated lifetimes of the radical ion-pairs were found to be hundreds of nanoseconds and were longer in the presence of pyridine.
KW - Electron transfer
KW - Fullerences
KW - Photochemistry
KW - Porphyrinoids
KW - Supramolecular chemistry
UR - http://www.scopus.com/inward/record.url?scp=22944489240&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=22944489240&partnerID=8YFLogxK
U2 - 10.1002/chem.200500186
DO - 10.1002/chem.200500186
M3 - Article
C2 - 15883985
AN - SCOPUS:22944489240
SN - 0947-6539
VL - 11
SP - 4416
EP - 4428
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 15
ER -