TY - GEN
T1 - Effect of heat-affected zone on spot weldability in automotive ultra high strength steel sheet
AU - Nagasaka, Akihiko
AU - Naito, Junya
AU - Chinzei, Shota
AU - Hojo, Tomohiko
AU - Horiguchi, Katsumi
AU - Skimizu, Yuki
AU - Furusawa, Takuro
AU - Kitahara, Yu
PY - 2015
Y1 - 2015
N2 - Effect of heat-affected zone (HAZ) on spot weldability in automotive hot stamping (HS) steel sheet was investigated for automotive applications. Tensile test was performed on a tensile testing machine at a crosshead speed of 3 mm/min, using spot welded test specimen (Parallel length: 60 mm, Width: 20 mm, Thickness: 1.4 mm, Tab: 20×20 mm). The spot welding test was carried out using spot welded test specimen with welding current (/) of 6.3 kA to 9.5 kA. Hardness was measured with the dynamic ultra micro Vickers hardness tester. In HS steel, has very high strength of 1 500 MPa, tensile strength (T5) and total elongation (TEC) of the spot welded test specimen of HS steel were lower than those of base metal test specimen. The spot welded test specimen broke in the weld. The Vickers hardnesses (HVs) of base metal and fusion zone of hot stamping steel were around HV500. In addition, the hardness of HAZ was under HV300. The difference of hardness between fusion zone and HAZ was around HV200. The hardness distribution acted as a notch. On the other hand, in dual phase (DP) steel, has low strength of 590 MPa, the TS of spot welded test specimen of DP steel was the same as the base metal test specimen because of the breaking of base metal. The TEl of the spot welded test specimen of DP steel was smaller than that of base metal test specimen. In the spot welded test specimen of DP steel, the hardness of base metal was around HV200 and the fusion zone was around HV500. The hardness distribution did not act as a notch. The difference in hardness between base metal and HAZ acted on a crack initiation at HAZ softening.
AB - Effect of heat-affected zone (HAZ) on spot weldability in automotive hot stamping (HS) steel sheet was investigated for automotive applications. Tensile test was performed on a tensile testing machine at a crosshead speed of 3 mm/min, using spot welded test specimen (Parallel length: 60 mm, Width: 20 mm, Thickness: 1.4 mm, Tab: 20×20 mm). The spot welding test was carried out using spot welded test specimen with welding current (/) of 6.3 kA to 9.5 kA. Hardness was measured with the dynamic ultra micro Vickers hardness tester. In HS steel, has very high strength of 1 500 MPa, tensile strength (T5) and total elongation (TEC) of the spot welded test specimen of HS steel were lower than those of base metal test specimen. The spot welded test specimen broke in the weld. The Vickers hardnesses (HVs) of base metal and fusion zone of hot stamping steel were around HV500. In addition, the hardness of HAZ was under HV300. The difference of hardness between fusion zone and HAZ was around HV200. The hardness distribution acted as a notch. On the other hand, in dual phase (DP) steel, has low strength of 590 MPa, the TS of spot welded test specimen of DP steel was the same as the base metal test specimen because of the breaking of base metal. The TEl of the spot welded test specimen of DP steel was smaller than that of base metal test specimen. In the spot welded test specimen of DP steel, the hardness of base metal was around HV200 and the fusion zone was around HV500. The hardness distribution did not act as a notch. The difference in hardness between base metal and HAZ acted on a crack initiation at HAZ softening.
KW - Heat-affected zone
KW - Hot stamping
KW - Spot weldability
UR - http://www.scopus.com/inward/record.url?scp=84985946975&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84985946975&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84985946975
T3 - 7th International Conference on High Strength Low Alloy Steels, HSLA Steels 2015, International Conference on Microalloying 2015, Microalloying 2015 and International Conference on Offshore Engineering Steels 2015, OES 2015
SP - 489
EP - 494
BT - 7th International Conference on High Strength Low Alloy Steels, HSLA Steels 2015, International Conference on Microalloying 2015, Microalloying 2015 and International Conference on Offshore Engineering Steels 2015, OES 2015
PB - John Wiley and Sons Inc.
T2 - 7th International Conference on High Strength Low Alloy Steels, HSLA Steels 2015, International Conference on Microalloying 2015, Microalloying 2015 and International Conference on Offshore Engineering Steels 2015, OES 2015
Y2 - 11 November 2015 through 13 November 2015
ER -