Effect of iron ore reduction on ferro-coke strength with hyper-coal addition

Ataru Uchida, Yoshiaki Yamazaki, Shohei Matsuo, Yasuhiro Saito, Yohsuke Matsushita, Hideyuki Aoki, Maki Hamaguchi

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


This study investigates the dominant factors affecting the strength of ferro-coke, which is produced by blending iron oxide with coal particles, with the addition of hyper-coal (HPC), to produce a high reactivity and strong coke. A diametral compression test for ferro-coke with and without HPC addition is performed. A three-dimensional ferro-coke model is then developed using micro X-ray computed tomography, and the relative proportions of pore, pore wall, iron, and pore space surrounding the iron particles, termed here "defect", are quantified using this model. Moreover, a stress analysis is performed for the ferro-coke model. The diametral compression tests indicate that the strength of ferro-coke increases with the increasing blending ratio of HPC. The image-based modeling indicates that the wall thickness increases and stress concentration is relaxed with increasing addition of HPC due to enhancement of the adhesiveness of coal particles. On the other hand, the relative proportion of the "defect" is independent of HPC addition. Therefore, ferro-coke strength is found to be determined not by the "defect" around iron oxide but by the wall thickness.

Original languageEnglish
Pages (from-to)957-964
Number of pages8
JournalTetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan
Issue number10
Publication statusPublished - 2019


  • 3d analysis
  • Coke strength
  • Ferro-coke
  • Hyper-coal
  • Micro X-ray computed tomography
  • Microstructure


Dive into the research topics of 'Effect of iron ore reduction on ferro-coke strength with hyper-coal addition'. Together they form a unique fingerprint.

Cite this