TY - GEN
T1 - Effect of measurement error on ultrasonic-measurement-integrated simulation of blood flow in an aortic aneurysm
AU - Funamoto, K.
AU - Hayase, T.
AU - Saijo, Y.
AU - Yambe, T.
PY - 2010
Y1 - 2010
N2 - Stresses due to blood flow on a blood vessel wall (hemodynamic stresses) are closely related to development and progression of circulatory diseases such as atherosclerosis and aneurysm. Therefore, for advanced diagnosis of circulatory diseases, accurate and detailed information of hemodynamics is necessary. To reproduce blood flow field, we have proposed ultrasonic- measurement-integrated (UMI) simulation, in which feedback signals are applied to the governing equations based on errors between ultrasonic measurement and numerical simulation at feedback points. Efficiency of the UMI simulation was shown by our previous numerical experiment dealing with a three-dimensional unsteady blood flow field in the descending aorta with an aneurysm. However, real ultrasonic measurement data inherently includes some errors. In this study, the effects of four major measurement errors, namely, errors due to Gaussian noise, aliasing, wall filter and lack of data, on computational accuracy of the UMI simulation were examined by a numerical experiment dealing with the blood flow field in an aortic aneurysm, the same as in our previous study. While solving the governing equations in UMI simulation, Gaussian noise did not work as an effective feedback signal, and, therefore, hardly influenced the computational result. In contrast, aliasing caused significant errors in the UMI simulation. By detecting significantly large feedback signals as a sign of aliasing and by replacing the measured Doppler velocity with the computational one, the computational accuracy of the UMI simulation was substantially improved. Effects of wall filter and lack of data especially appeared in diastole and in systole, respectively, but they were alleviated by not adding feedback signals where measured Doppler velocities were zero. Hence, UMI simulation can be performed with suppression of measurement errors.
AB - Stresses due to blood flow on a blood vessel wall (hemodynamic stresses) are closely related to development and progression of circulatory diseases such as atherosclerosis and aneurysm. Therefore, for advanced diagnosis of circulatory diseases, accurate and detailed information of hemodynamics is necessary. To reproduce blood flow field, we have proposed ultrasonic- measurement-integrated (UMI) simulation, in which feedback signals are applied to the governing equations based on errors between ultrasonic measurement and numerical simulation at feedback points. Efficiency of the UMI simulation was shown by our previous numerical experiment dealing with a three-dimensional unsteady blood flow field in the descending aorta with an aneurysm. However, real ultrasonic measurement data inherently includes some errors. In this study, the effects of four major measurement errors, namely, errors due to Gaussian noise, aliasing, wall filter and lack of data, on computational accuracy of the UMI simulation were examined by a numerical experiment dealing with the blood flow field in an aortic aneurysm, the same as in our previous study. While solving the governing equations in UMI simulation, Gaussian noise did not work as an effective feedback signal, and, therefore, hardly influenced the computational result. In contrast, aliasing caused significant errors in the UMI simulation. By detecting significantly large feedback signals as a sign of aliasing and by replacing the measured Doppler velocity with the computational one, the computational accuracy of the UMI simulation was substantially improved. Effects of wall filter and lack of data especially appeared in diastole and in systole, respectively, but they were alleviated by not adding feedback signals where measured Doppler velocities were zero. Hence, UMI simulation can be performed with suppression of measurement errors.
KW - Aneurysm
KW - Bio-fluid mechanics
KW - Computational fluid dynamics
KW - Measurement-integrated simulation
KW - Ultrasonic measurement
UR - http://www.scopus.com/inward/record.url?scp=77957992330&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957992330&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-14515-5_420
DO - 10.1007/978-3-642-14515-5_420
M3 - Conference contribution
AN - SCOPUS:77957992330
SN - 9783540790389
T3 - IFMBE Proceedings
SP - 1652
EP - 1655
BT - 6th World Congress of Biomechanics, WCB 2010 - In Conjunction with 14th International Conference on Biomedical Engineering, ICBME and 5th Asia Pacific Conference on Biomechanics, APBiomech
T2 - 6th World Congress of Biomechanics, WCB 2010 - In Conjunction with 14th International Conference on Biomedical Engineering, ICBME and 5th Asia Pacific Conference on Biomechanics, APBiomech
Y2 - 1 August 2010 through 6 August 2010
ER -