TY - JOUR
T1 - Effect of peri-implant bone resorption on mechanical stress in the implant body
T2 - In vivo measured load-based finite element analysis
AU - Bing, Liu
AU - Mito, Takehiko
AU - Yoda, Nobuhiro
AU - Sato, Emika
AU - Shigemitsu, Ryuji
AU - Han, Jian Min
AU - Sasaki, Keiichi
N1 - Funding Information:
This study was fully supported by grants‐in‐aid for Scientific Research (C) (17K11735) from the Japan Ministry of Education, Culture, Sports, Science and Technology.
Publisher Copyright:
© 2020 John Wiley & Sons Ltd
PY - 2020/12
Y1 - 2020/12
N2 - Background: Research on resolving implant fracture is still gaining attention as it can be a serious treatment failure outcome. The implant fracture is likely to occur due to increased stress in implant body associated with peri-implant bone resorption. Objective: This study aimed to investigate the relationship between degree of peri-implant bone resorption and stress distribution in implant body by using finite element analysis (FEA). Methods: The magnitude and direction of loads on implants at the mandibular molar region were measured with 3D piezoelectric force transducers in a patient during maximal voluntary clenching, grinding and tapping to obtain input for the FEA as the loading condition. Simplified finite element bone models were generated to simulate the six patterns of peri-implant bone resorption progression which the bone levels from implant platform were set at 0, 1, 2, 3, 4 and 5 mm. Three types of implants with different diameters (3.5, 4.0 and 5.0 mm), corresponding abutments and screws were created. FEA using the in vivo measured load was conducted to investigate how peri-implant bone loss affects stress distribution in the implant body. Results: Loading condition affected stress distribution in the implant body. As bone resorption increased, von Mises stress in the implant body became larger, which was marked in smaller diameter implants, and this change was amply demonstrated when the bone resorption increased from 0 to 2 mm. Conclusion: The FEA demonstrated that as peri-implant bone loss increased, the magnitude of stress in the implant increased, especially in small diameter implants.
AB - Background: Research on resolving implant fracture is still gaining attention as it can be a serious treatment failure outcome. The implant fracture is likely to occur due to increased stress in implant body associated with peri-implant bone resorption. Objective: This study aimed to investigate the relationship between degree of peri-implant bone resorption and stress distribution in implant body by using finite element analysis (FEA). Methods: The magnitude and direction of loads on implants at the mandibular molar region were measured with 3D piezoelectric force transducers in a patient during maximal voluntary clenching, grinding and tapping to obtain input for the FEA as the loading condition. Simplified finite element bone models were generated to simulate the six patterns of peri-implant bone resorption progression which the bone levels from implant platform were set at 0, 1, 2, 3, 4 and 5 mm. Three types of implants with different diameters (3.5, 4.0 and 5.0 mm), corresponding abutments and screws were created. FEA using the in vivo measured load was conducted to investigate how peri-implant bone loss affects stress distribution in the implant body. Results: Loading condition affected stress distribution in the implant body. As bone resorption increased, von Mises stress in the implant body became larger, which was marked in smaller diameter implants, and this change was amply demonstrated when the bone resorption increased from 0 to 2 mm. Conclusion: The FEA demonstrated that as peri-implant bone loss increased, the magnitude of stress in the implant increased, especially in small diameter implants.
KW - biomechanics
KW - dental implant
KW - finite element analysis
KW - fracture
KW - stress
UR - http://www.scopus.com/inward/record.url?scp=85092037490&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092037490&partnerID=8YFLogxK
U2 - 10.1111/joor.13097
DO - 10.1111/joor.13097
M3 - Article
C2 - 32969078
AN - SCOPUS:85092037490
SN - 0305-182X
VL - 47
SP - 1566
EP - 1573
JO - Journal of Oral Rehabilitation
JF - Journal of Oral Rehabilitation
IS - 12
ER -