TY - GEN
T1 - Effect of wall cooling or heating on streaks in high-speed boundary layers
AU - Sahli, Omar Es
AU - Sescu, Adrian
AU - Afsar, Mohammed
AU - Hattori, Yuji
AU - Hirota, Makoto
N1 - Publisher Copyright:
© 2021, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2021
Y1 - 2021
N2 - High-amplitude upstream disturbances and wall surface roughness elements trigger streamwise/Görtler vortices and the associated streaks in boundary layers over flat or concave surfaces. Following the transient growth phase, the fully-developed vortices become sensitive to inviscid secondary instabilities, which ultimately result in a premature transition to turbulence. Our work aims at investigating the effect of cooling/heating on the initiation and development of such streaks in an attempt to gain a better understanding of the conditions and governing mechanisms leading to secondary instabilities in high-speed compressible boundary layers. We conduct a parametric study via a robust and efficient numerical solution to the non-linear compressible boundary region equations (NCBRE) to identify the impact of varying the wall temperature on the development of streaks in supersonic and hypersonic boundary layer flows.
AB - High-amplitude upstream disturbances and wall surface roughness elements trigger streamwise/Görtler vortices and the associated streaks in boundary layers over flat or concave surfaces. Following the transient growth phase, the fully-developed vortices become sensitive to inviscid secondary instabilities, which ultimately result in a premature transition to turbulence. Our work aims at investigating the effect of cooling/heating on the initiation and development of such streaks in an attempt to gain a better understanding of the conditions and governing mechanisms leading to secondary instabilities in high-speed compressible boundary layers. We conduct a parametric study via a robust and efficient numerical solution to the non-linear compressible boundary region equations (NCBRE) to identify the impact of varying the wall temperature on the development of streaks in supersonic and hypersonic boundary layer flows.
UR - http://www.scopus.com/inward/record.url?scp=85100304351&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100304351&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85100304351
SN - 9781624106095
T3 - AIAA Scitech 2021 Forum
SP - 1
EP - 16
BT - AIAA Scitech 2021 Forum
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021
Y2 - 11 January 2021 through 15 January 2021
ER -