TY - JOUR
T1 - Effects of a Low-Pass Filter on the Classification of Protein Electron-Density Maps in Terms of Structural Polymorphism using Manifold Learning
T2 - A simulation study for cryo-electron microscopy experiments
AU - Takano, Naoto
AU - Yoshidome, Takashi
N1 - Funding Information:
Acknowledgments This research was supported by JSPS KAKENHI Grant Number JP16K20913 and Grant for Basic Science Research Projects from the Sumitomo Foundation. T.Y. thanks Mr. Kojima for his help in the preparation of some figures.
Publisher Copyright:
© 2019 The Physical Society of Japan.
PY - 2019
Y1 - 2019
N2 - Analyzing the structure of proteins in terms of their structural polymorphism has been recently performed using their two-dimensional electron-density maps obtained through cryo-electron microscopy (cryo-EM) experiments. In performing such analyses for a protein, the initial step is to classify its maps in terms of its structural polymorphism. Although current programs used for analyzing cryo-EM experimental data implement classification algorithms, they require the number of classes as input prior to conducting the classification. However, the number of classes is generally unknown, and choosing the wrong number of classes leads to difficulties in performing the structural analyses. Manifold learning is a candidate to resolve this issue because it has been successfully used for the classification of two-dimensional electron-density maps. However, a low signal-to-noise ratio of the maps would lead to the failure of the classification, especially for small proteins. Here, we investigated the effects of a low-pass filter, which can reduce noise, on the classification of two-dimensional electron-density maps using manifold learning. We performed a simulation for a cryo-EM experiment of a small protein that predominantly adopts two states. We found that while the classification failed for the raw two-dimensional electron-density maps, it was successful for the maps where a low-pass filter was applied. We also investigated the dependence of the filter’s parameters on the classification and found a relation between the values of the parameters and the degree of success of the classification.
AB - Analyzing the structure of proteins in terms of their structural polymorphism has been recently performed using their two-dimensional electron-density maps obtained through cryo-electron microscopy (cryo-EM) experiments. In performing such analyses for a protein, the initial step is to classify its maps in terms of its structural polymorphism. Although current programs used for analyzing cryo-EM experimental data implement classification algorithms, they require the number of classes as input prior to conducting the classification. However, the number of classes is generally unknown, and choosing the wrong number of classes leads to difficulties in performing the structural analyses. Manifold learning is a candidate to resolve this issue because it has been successfully used for the classification of two-dimensional electron-density maps. However, a low signal-to-noise ratio of the maps would lead to the failure of the classification, especially for small proteins. Here, we investigated the effects of a low-pass filter, which can reduce noise, on the classification of two-dimensional electron-density maps using manifold learning. We performed a simulation for a cryo-EM experiment of a small protein that predominantly adopts two states. We found that while the classification failed for the raw two-dimensional electron-density maps, it was successful for the maps where a low-pass filter was applied. We also investigated the dependence of the filter’s parameters on the classification and found a relation between the values of the parameters and the degree of success of the classification.
UR - http://www.scopus.com/inward/record.url?scp=85071274845&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071274845&partnerID=8YFLogxK
U2 - 10.7566/JPSJ.88.094801
DO - 10.7566/JPSJ.88.094801
M3 - Article
AN - SCOPUS:85071274845
SN - 0031-9015
VL - 88
JO - Journal of the Physical Society of Japan
JF - Journal of the Physical Society of Japan
IS - 9
M1 - 094801
ER -