Abstract
CaKFe4As4 superconducting tapes are fabricated via different techniques to enhance grain connectivity. The critical current density, J c, increases exponentially with the Vickers hardness of the superconducting core. The J c (4.2 K, 10 T) of the hot isostatic pressed Cu/Ag-sheathed tape reaches 2.2 × 104 A cm-2, while that of the stainless steel/Ag-sheathed tapes surpasses 104 A cm-2. However, silver infiltrates from the sheath far into the center of the superconducting core and reacts with the CaKFe4As4 phase, which has significant ramifications for the transport current. We suggest that CaKFe4As4 has great potential if we can realize stable coexistence between the superconducting core and the sheath.
Original language | English |
---|---|
Article number | 105014 |
Journal | Superconductor Science and Technology |
Volume | 32 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2019 Sept 12 |
Keywords
- CaKFeAs
- critical current density
- iron-based superconductors
- superconducting tapes
ASJC Scopus subject areas
- Ceramics and Composites
- Condensed Matter Physics
- Metals and Alloys
- Electrical and Electronic Engineering
- Materials Chemistry
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Effects of core density and impurities on the critical current density of CaKFe4As4 superconducting tapes'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Superconductor Science and Technology, Vol. 32, No. 10, 105014, 12.09.2019.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Effects of core density and impurities on the critical current density of CaKFe4As4 superconducting tapes
AU - Cheng, Zhe
AU - Liu, Shifa
AU - Dong, Chiheng
AU - Huang, He
AU - Li, Liu
AU - Zhu, Yanchang
AU - Awaji, Satoshi
AU - Ma, Yanwei
N1 - Funding Information: Zhe Cheng Shifa Liu Chiheng Dong He Huang Liu Li Yanchang Zhu Satoshi Awaji Yanwei Ma Zhe Cheng Shifa Liu Chiheng Dong He Huang Liu Li Yanchang Zhu Satoshi Awaji Yanwei Ma Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China University of Chinese Academy of Science, Beijing, 100049, People’s Republic of China High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan Authors to whom any correspondence should be addressed. Zhe Cheng, Shifa Liu, Chiheng Dong, He Huang, Liu Li, Yanchang Zhu, Satoshi Awaji and Yanwei Ma 2019-10-01 2019-09-12 10:02:47 cgi/release: Article released bin/incoming: New from .zip Strategic Priority Research Program of Chinese Academy of Sciences XDB25000000 Bureau of Frontier Sciences and Education QYZDJ-SSW-JSC026 International Partnership Program of Chinese Academy of Science 182111KYSB20160014 GJHZ1175 National Natural Science Foundation of China https://doi.org/10.13039/501100001809 51677179 51721005 U1832213 yes CaKFe 4 As 4 superconducting tapes are fabricated via different techniques to enhance grain connectivity. The critical current density, J c , increases exponentially with the Vickers hardness of the superconducting core. The J c (4.2 K, 10 T) of the hot isostatic pressed Cu/Ag-sheathed tape reaches 2.2�נ10 4 A cm −2 , while that of the stainless steel/Ag-sheathed tapes surpasses 10 4 A cm −2 . However, silver infiltrates from the sheath far into the center of the superconducting core and reacts with the CaKFe 4 As 4 phase, which has significant ramifications for the transport current. We suggest that CaKFe 4 As 4 has great potential if we can realize stable coexistence between the superconducting core and the sheath. � 2019 IOP Publishing Ltd [1] Hosono H, Yamamoto A, Hiramatsu H and Ma Y 2018 Mater. Today 21 278–302 10.1016/j.mattod.2017.09.006 Hosono H, Yamamoto A, Hiramatsu H and Ma Y Mater. Today 1369-7021 21 2018 278 302 [2] Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M and Hosono H 2008 Nature 453 376–8 10.1038/nature06972 Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M and Hosono H Nature 453 2008 376 378 [3] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006 10.1103/PhysRevLett.101.107006 Rotter M, Tegel M and Johrendt D Phys. Rev. Lett. 101 107006 2008 [4] Fang L et al 2012 Appl. Phys. Lett. 101 012601 10.1063/1.4731204 Fang L et al Appl. Phys. Lett. 101 012601 2012 [5] Wang C, Gao Z, Yao C, Wang L, Qi Y, Wang D, Zhang X and Ma Y 2011 Supercond. Sci. Technol. 24 065002 10.1088/0953-2048/24/6/065002 Wang C, Gao Z, Yao C, Wang L, Qi Y, Wang D, Zhang X and Ma Y Supercond. Sci. Technol. 0953-2048 24 6 065002 2011 [6] Weiss J D, Tarantini C, Jiang J, Kametani F, Polyanskii A A, Larbalestier D C and Hellstrom E E 2012 Nat. Mater. 11 682–5 10.1038/nmat3333 Weiss J D, Tarantini C, Jiang J, Kametani F, Polyanskii A A, Larbalestier D C and Hellstrom E E Nat. Mater. 11 2012 682 685 [7] Pyon S, Suwa T, Tamegai T, Takano K, Kajitani H, Koizumi N, Awaji S, Zhou N and Shi Z 2018 Supercond. Sci. Technol. 31 055016 10.1088/1361-6668/aab8c3 Pyon S, Suwa T, Tamegai T, Takano K, Kajitani H, Koizumi N, Awaji S, Zhou N and Shi Z Supercond. Sci. Technol. 0953-2048 31 5 055016 2018 [8] Liu S, Lin K, Yao C, Zhang X, Dong C, Wang D, Awaji S, Kumakura H and Ma Y 2017 Supercond. Sci. Technol. 30 115007 10.1088/1361-6668/aa87ec Liu S, Lin K, Yao C, Zhang X, Dong C, Wang D, Awaji S, Kumakura H and Ma Y Supercond. Sci. Technol. 0953-2048 30 11 115007 2017 [9] Lin H et al 2014 Sci. Rep. 4 6944 10.1038/srep06944 Lin H et al Sci. Rep. 4 2014 6944 [10] Huang H, Yao C, Dong C, Zhang X, Wang D, Cheng Z, Li J, Awaji S, Wen H and Ma Y 2018 Supercond. Sci. Technol. 31 015017 10.1088/1361-6668/aa9912 Huang H, Yao C, Dong C, Zhang X, Wang D, Cheng Z, Li J, Awaji S, Wen H and Ma Y Supercond. Sci. Technol. 0953-2048 31 1 015017 2018 [11] Lin K et al 2016 Supercond. Sci. Technol. 29 095006 10.1088/0953-2048/29/9/095006 Lin K et al Supercond. Sci. Technol. 0953-2048 29 9 095006 2016 [12] Yao C, Lin H, Zhang Q, Zhang X, Wang D, Dong C, Ma Y, Awaji S and Watanabe K 2015 J. Appl. Phys. 118 203909 10.1063/1.4936370 Yao C, Lin H, Zhang Q, Zhang X, Wang D, Dong C, Ma Y, Awaji S and Watanabe K J. Appl. Phys. 118 203909 2015 [13] Yao C, Wang D, Huang H, Dong C, Zhang X, Ma Y and Awaji S 2017 Supercond. Sci. Technol. 30 075010 10.1088/1361-6668/aa70d0 Yao C, Wang D, Huang H, Dong C, Zhang X, Ma Y and Awaji S Supercond. Sci. Technol. 0953-2048 30 7 075010 2017 [14] Dong C, Yao C, Zhang X, Wang D and Ma Y 2019 IEEE Trans. Appl. Supercond. 29 7300504 10.1109/tasc.2019.2901378 Dong C, Yao C, Zhang X, Wang D and Ma Y IEEE Trans. Appl. Supercond. 1051-8223 29 7300504 2019 [15] Liu S et al 2019 Supercond. Sci. Technol. 32 044007 10.1088/1361-6668/aaff27 Liu S et al Supercond. Sci. Technol. 0953-2048 32 4 044007 2019 [16] Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H and Yoshida Y 2016 J. Am. Chem. Soc. 138 3410–5 10.1021/jacs.5b12571 Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H and Yoshida Y J. Am. Chem. Soc. 138 2016 3410 3415 [17] Meier W R et al 2016 Phys. Rev. B 94 064501 10.1103/PhysRevB.94.064501 Meier W R et al Phys. Rev. 94 B 064501 2016 [18] Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L and Wang N L 2009 Nature 457 565–8 10.1038/nature07676 Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L and Wang N L Nature 457 2009 565 568 [19] Putti M et al 2010 Supercond. Sci. Technol. 23 034003 10.1088/0953-2048/23/3/034003 Putti M et al Supercond. Sci. Technol. 0953-2048 23 3 034003 2010 [20] Cheng W, Lin H, Shen B and Wen H-H 2019 Sci. Bull. 64 81–90 10.1016/j.scib.2018.12.024 Cheng W, Lin H, Shen B and Wen H-H Sci. Bull. 64 2019 81 90 [21] Singh S J, Bristow M, Meier W R, Taylor P, Blundell S J, Canfield P C and Coldea A I 2018 Phys. Rev. Mater. 2 074802 10.1103/PhysRevMaterials.2.074802 Singh S J, Bristow M, Meier W R, Taylor P, Blundell S J, Canfield P C and Coldea A I Phys. Rev. Mater. 2 074802 2018 [22] Pyon S et al 2019 Phys. Rev. B 99 104506 10.1103/PhysRevB.99.104506 Pyon S et al Phys. Rev. 99 B 104506 2019 [23] Cheng Z, Dong C, Huang H, Liu S, Zhu Y, Wang D, Vlasko-Vlasov V, Welp U, Kwok W-K and Ma Y 2019 Supercond. Sci. Technol. 32 015008 10.1088/1361-6668/aaedff Cheng Z, Dong C, Huang H, Liu S, Zhu Y, Wang D, Vlasko-Vlasov V, Welp U, Kwok W-K and Ma Y Supercond. Sci. Technol. 0953-2048 32 1 015008 2019 [24] Pyon S, Miyawaki D, Veshchunov I, Tamegai T, Takano K, Kajitani H, Koizumi N and Awaji S 2018 Appl. Phys. Express 11 123101 10.7567/APEX.11.123101 Pyon S, Miyawaki D, Veshchunov I, Tamegai T, Takano K, Kajitani H, Koizumi N and Awaji S Appl. Phys. Express 1882-0786 11 12 123101 2018 [25] Lin H, Yao C, Zhang X P, Zhang H T, Wang D L, Zhang Q J and Ma Y W 2013 Physica C 495 48–54 10.1016/j.physc.2013.07.014 Lin H, Yao C, Zhang X P, Zhang H T, Wang D L, Zhang Q J and Ma Y W Physica 0921-4534 495 C 2013 48 54 [26] Huang H, Yao C, Li L, Dong C, Liu S, Zhang X, Zhu Y, Cheng Z and Ma Y 2019 Supercond. Sci. Technol. 32 025007 10.1088/1361-6668/aaf486 Huang H, Yao C, Li L, Dong C, Liu S, Zhang X, Zhu Y, Cheng Z and Ma Y Supercond. Sci. Technol. 0953-2048 32 2 025007 2019 [27] Zhang X et al 2014 Appl. Phys. Lett. 104 202601 10.1063/1.4879557 Zhang X et al Appl. Phys. Lett. 104 202601 2014 [28] Lin H, Yao C, Zhang X, Zhang H, Zhang Q, Wang D, Dong C and Ma Y 2016 Scr. Mater. 112 128–31 10.1016/j.scriptamat.2015.09.031 Lin H, Yao C, Zhang X, Zhang H, Zhang Q, Wang D, Dong C and Ma Y Scr. Mater. 1359-6462 112 2016 128 131 [29] Yao C et al 2012 Supercond. Sci. Technol. 25 035020 10.1088/0953-2048/25/3/035020 Yao C et al Supercond. Sci. Technol. 0953-2048 25 3 035020 2012 Publisher Copyright: © 2019 IOP Publishing Ltd.
PY - 2019/9/12
Y1 - 2019/9/12
N2 - CaKFe4As4 superconducting tapes are fabricated via different techniques to enhance grain connectivity. The critical current density, J c, increases exponentially with the Vickers hardness of the superconducting core. The J c (4.2 K, 10 T) of the hot isostatic pressed Cu/Ag-sheathed tape reaches 2.2 × 104 A cm-2, while that of the stainless steel/Ag-sheathed tapes surpasses 104 A cm-2. However, silver infiltrates from the sheath far into the center of the superconducting core and reacts with the CaKFe4As4 phase, which has significant ramifications for the transport current. We suggest that CaKFe4As4 has great potential if we can realize stable coexistence between the superconducting core and the sheath.
AB - CaKFe4As4 superconducting tapes are fabricated via different techniques to enhance grain connectivity. The critical current density, J c, increases exponentially with the Vickers hardness of the superconducting core. The J c (4.2 K, 10 T) of the hot isostatic pressed Cu/Ag-sheathed tape reaches 2.2 × 104 A cm-2, while that of the stainless steel/Ag-sheathed tapes surpasses 104 A cm-2. However, silver infiltrates from the sheath far into the center of the superconducting core and reacts with the CaKFe4As4 phase, which has significant ramifications for the transport current. We suggest that CaKFe4As4 has great potential if we can realize stable coexistence between the superconducting core and the sheath.
KW - CaKFeAs
KW - critical current density
KW - iron-based superconductors
KW - superconducting tapes
UR - http://www.scopus.com/inward/record.url?scp=85072709126&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072709126&partnerID=8YFLogxK
U2 - 10.1088/1361-6668/ab3a87
DO - 10.1088/1361-6668/ab3a87
M3 - Article
AN - SCOPUS:85072709126
SN - 0953-2048
VL - 32
JO - Superconductor Science and Technology
JF - Superconductor Science and Technology
IS - 10
M1 - 105014
ER -