Effects of patient movement on measurements of myocardial blood flow and viability in resting 15O-water PET studies

Kazuhiro Koshino, Hiroshi Watabe, Junichiro Enmi, Yoshiyuki Hirano, Tsutomu Zeniya, Shinji Hasegawa, Takuya Hayashi, Shigeru Miyagawa, Yoshiki Sawa, Jun Hatazawa, Hidehiro Iida

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)


Background. Patient movement has been considered an important source of errors in cardiac PET. This study was aimed at evaluating the effects of such movement on myocardial blood flow (MBF) and perfusable tissue fraction (PTF) measurements in intravenous 15O-water PET. Methods. Nineteen 15O-water scans were performed on ten healthy volunteers and three patients with severe cardiac dysfunction under resting conditions. Motions of subjects during scans were estimated by monitoring locations of markers on their chests using an optical motion-tracking device. Each sinogram of the dynamic emission frames was corrected for subject motion. Variation of regional MBF and PTF with and without the motion corrections was evaluated. Results. In nine scans, motions during 15O-water scan (inter-frame (IF) motion) and misalignments relative to the transmission scan (inter-scan (IS) motion) larger than the spatial resolution of the PET scanner (4.0 mm) were both detected by the optical motion-tracking device. After correction for IF motions, MBF values changed from 0.845 ± 0.366 to 0.780 ± 0.360 mL/minute/g (P >.05). In four scans with only IS motion detected, PTF values changed significantly from 0.465 ± 0.118 to 0.504 ± 0.087 g/mL (P>.05), but no significant change was found in MBF values. Conclusions. This study demonstrates that IF motion during 15O-water scan at rest can be source of error in MBF measurement. Furthermore, estimated MBF is less sensitive than PTF values to misalignment between transmission and 15O-water emission scans.

Original languageEnglish
Pages (from-to)524-533
Number of pages10
JournalJournal of Nuclear Cardiology
Issue number3
Publication statusPublished - 2012 Jun


  • O-labeled water
  • Motion correction
  • Myocardial blood flow
  • Myocardial perfusion imaging
  • PET
  • Water-perfusable tissue fraction


Dive into the research topics of 'Effects of patient movement on measurements of myocardial blood flow and viability in resting 15O-water PET studies'. Together they form a unique fingerprint.

Cite this