Abstract
The influence of an electric field on carbon nanotube (CNT) growth using hot-filament chemical vapour deposition is investigated. Acetylene (C2H2) gas diluted with hydrogen is used as the source gas for the growth of CNTs, and a bias voltage of -300 V is applied to the sample stage during growth. The silicon substrate onto which the CNT is grown is prepared by sputtering a thin catalysed metal (Ni) film onto the surface, and the CNT is selectively grown from the tip of a silicon protrusion on the substrate. It is found that the application of a high electrostatic field with a negative substrate bias enhances the growth of CNTs in this situation. This effect is successfully applied to the fabrication of a CNT tip supported by a silicon cantilever for use in scanning probe microscopy.
Original language | English |
---|---|
Pages (from-to) | 62-64 |
Number of pages | 3 |
Journal | Nanotechnology |
Volume | 13 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2002 Feb |