Electrical control of the ferromagnetic phase transition in cobalt at room temperature

Daichi Chiba, S. Fukami, K. Shimamura, N. Ishiwata, K. Kobayashi, T. Ono

Research output: Contribution to journalArticlepeer-review

392 Citations (Scopus)


Electrical control of magnetic properties is crucial for device applicationsin the field of spintronics. Although the magnetic coercivity or anisotropy has been successfully controlled electrically in metals as well as in semiconductors, the electrical control of Curie temperature has been realized only in semiconductors at low temperature. Here, we demonstrate the room-temperature electrical control of the ferromagnetic phase transition in cobalt, one of the most representative transition-metal ferromagnets. Solid-state field effect devices consisting of a ultrathin cobalt film covered by a dielectric layer and a gate electrode were fabricated. We prove that the Curie temperature of cobalt can be changed by up to 12K by applying a gate electric field of about 2MVcm-1. The two-dimensionality of the cobalt film may be relevant to our observations. The demonstrated electric field effect in the ferromagnetic metal at room temperature is a significant step towards realizing future low-power magnetic applications.

Original languageEnglish
Pages (from-to)853-856
Number of pages4
JournalNature Materials
Issue number11
Publication statusPublished - 2011 Nov


Dive into the research topics of 'Electrical control of the ferromagnetic phase transition in cobalt at room temperature'. Together they form a unique fingerprint.

Cite this