TY - JOUR
T1 - Electrical magnetization reversal in ferromagnetic III-V semiconductors
AU - Chiba, Daichi
AU - Matsukura, F.
AU - Ohno, H.
PY - 2006/7/7
Y1 - 2006/7/7
N2 - Introduction of a high concentration of manganese in III-V semiconductors, such as InAs and GaAs, results in carrier-induced ferromagnetism, which allows us to integrate ferromagnetism in nonmagnetic heterostructures and which modifies their magnetic properties through electric-field control of carrier concentration. The properties of ferromagnetism can in many cases be semi-quantitatively understood by the p-d Zener model, which is qualitatively different from conventional ferromagnetic metals. These ferromagnetic III-V semiconductors also offer the unique opportunity of examining spin-dependent phenomena observed so far only in metallic systems. Here, we review our experimental study on electrical manipulation of magnetization in these ferromagnetic III-V semiconductors. We first describe the results of electrically assisted magnetization reversal in ferromagnetic semiconductor (In, Mn)As field-effect transistor structures. The coercivity as well as ferromagnetic transition temperature can be controlled through the modification of carrier concentration by applied electric fields in a gated structure. We then present electrical magnetization reversal by spin-transfer torque exerted by spin-polarized currents at low threshold current density (∼10 5 A cm-2) in (Ga, Mn)As-based magnetic tunnel junctions.
AB - Introduction of a high concentration of manganese in III-V semiconductors, such as InAs and GaAs, results in carrier-induced ferromagnetism, which allows us to integrate ferromagnetism in nonmagnetic heterostructures and which modifies their magnetic properties through electric-field control of carrier concentration. The properties of ferromagnetism can in many cases be semi-quantitatively understood by the p-d Zener model, which is qualitatively different from conventional ferromagnetic metals. These ferromagnetic III-V semiconductors also offer the unique opportunity of examining spin-dependent phenomena observed so far only in metallic systems. Here, we review our experimental study on electrical manipulation of magnetization in these ferromagnetic III-V semiconductors. We first describe the results of electrically assisted magnetization reversal in ferromagnetic semiconductor (In, Mn)As field-effect transistor structures. The coercivity as well as ferromagnetic transition temperature can be controlled through the modification of carrier concentration by applied electric fields in a gated structure. We then present electrical magnetization reversal by spin-transfer torque exerted by spin-polarized currents at low threshold current density (∼10 5 A cm-2) in (Ga, Mn)As-based magnetic tunnel junctions.
UR - http://www.scopus.com/inward/record.url?scp=33745319272&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33745319272&partnerID=8YFLogxK
U2 - 10.1088/0022-3727/39/13/R01
DO - 10.1088/0022-3727/39/13/R01
M3 - Review article
AN - SCOPUS:33745319272
SN - 0022-3727
VL - 39
SP - R215-R225
JO - Journal Physics D: Applied Physics
JF - Journal Physics D: Applied Physics
IS - 13
M1 - R01
ER -