Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice

Pilkyung Moon, Mikito Koshino

Research output: Contribution to journalArticlepeer-review

164 Citations (Scopus)


We theoretically investigate the electronic structures of moiré superlattices arising in monolayer/bilayer graphene stacked on hexagonal boron nitride (hBN) in the presence and absence of magnetic field. We develop an effective continuum model from a microscopic tight-binding lattice Hamiltonian and calculate the electronic structures of graphene-hBN systems with different rotation angles. Using the effective model, we explain the characteristic band properties such as the gap opening at the corners of the superlattice Brillouin zone (mini-Dirac point). We also investigate the energy spectrum and quantum Hall effect of graphene-hBN systems in uniform magnetic field and demonstrate the evolution of the fractal spectrum as a function of the magnetic field. The spectrum generally splits in the valley degrees of freedom (K and K′) due to the lack of the inversion symmetry, and the valley splitting is more significant in bilayer graphene on hBN than in monolayer graphene on hBN because of the stronger inversion-symmetry breaking in bilayer.

Original languageEnglish
Article number155406
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number15
Publication statusPublished - 2014 Oct 3

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice'. Together they form a unique fingerprint.

Cite this