TY - JOUR
T1 - Electronic structures of lead iodide based low-dimensional crystals
AU - Umebayashi, T.
AU - Asai, K.
AU - Umebayashi, T.
AU - Asai, K.
AU - Kondo, T.
AU - Kondo, T.
AU - Nakao, A.
PY - 2003/4/15
Y1 - 2003/4/15
N2 - The electronic structures of three-dimensional and two-dimensional lead-halide-based crystals (formula presented) and (formula presented) are investigated by photoelectron spectroscopy and band calculations using the linear combination of atomic orbitals within the density-functional theory. For both crystals, the top of the valence band is found to consist mainly of the (formula presented)-antibonding states of Pb (formula presented) and I (formula presented) orbitals, and the bottom of the conduction band to be composed primarily of the (formula presented)-antibonding states of Pb (formula presented) and I (formula presented) orbitals. Photoelectron spectra of the valence-band region indicate that the electronic structures change depending on the dimensionality of the crystals. Based on the calculation results, the differences observed in the spectra are rationalized in terms of narrowing bandwidth as the dimensionality decreases from three to two dimensions. It is shown that the bandwidth narrowing of the two-dimensional crystal is due to zero dispersion in the vertical direction and the Jahn-Teller effect in the layered structure. These effects lead to a wideband gap and high exciton stability in (formula presented).
AB - The electronic structures of three-dimensional and two-dimensional lead-halide-based crystals (formula presented) and (formula presented) are investigated by photoelectron spectroscopy and band calculations using the linear combination of atomic orbitals within the density-functional theory. For both crystals, the top of the valence band is found to consist mainly of the (formula presented)-antibonding states of Pb (formula presented) and I (formula presented) orbitals, and the bottom of the conduction band to be composed primarily of the (formula presented)-antibonding states of Pb (formula presented) and I (formula presented) orbitals. Photoelectron spectra of the valence-band region indicate that the electronic structures change depending on the dimensionality of the crystals. Based on the calculation results, the differences observed in the spectra are rationalized in terms of narrowing bandwidth as the dimensionality decreases from three to two dimensions. It is shown that the bandwidth narrowing of the two-dimensional crystal is due to zero dispersion in the vertical direction and the Jahn-Teller effect in the layered structure. These effects lead to a wideband gap and high exciton stability in (formula presented).
UR - http://www.scopus.com/inward/record.url?scp=0038518096&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0038518096&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.67.155405
DO - 10.1103/PhysRevB.67.155405
M3 - Article
AN - SCOPUS:0038518096
SN - 1098-0121
VL - 67
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 15
ER -